Skip to main content
Log in

Effect of Laser Pulse Repetition Rate on the Detection Limits of the Elemental Composition of Pollutants in Aqueous Solutions by Femtosecond Laser Induced Breakdown Spectroscopy

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract—

The dependence of the limits of detection of Mg, Mn, Sr, Pb, Al, and B in aqueous solutions on the laser pulse repetition rate is studied by femtosecond laser induced breakdown spectroscopy for the laser pulse repetition rate from 50 to 1000 Hz. The limit of detection is shown to be the best at a laser pulse repetition rate of 166 Hz for all the elements under study, other experimental conditions being the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41 (4), 572–579 (1987).

    Article  ADS  Google Scholar 

  2. C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta, Part B 50 (9), 1059–1075 (1995).

    Article  ADS  Google Scholar 

  3. Laser Induced Breakdown Spectroscopy, Ed. by A.W. Miziolek, V. Palleschi, and I. Schechter (Cambridge University Press, 2006).

    Google Scholar 

  4. T. Banba, H. Hagiya, Yu. Tamura, M. Senoo, Ch. Yonezawa, and P. B. Carter, “Chemical analysis of high-level radioactive waste glass by ICP-AES,” Anal. Sci. 14 (2), 389–394 (1998).

    Article  Google Scholar 

  5. E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84 (5), 2239–2244 (2012).

    Article  Google Scholar 

  6. C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, Part B 63 (9), 893–916 (2008).

    Article  ADS  Google Scholar 

  7. R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, Ch. Meinhardt, M. Scharun, V. Strum, J. Makowe, and Ch. D. Ghlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta, Part B 93, 41–51 (2014).

    Article  ADS  Google Scholar 

  8. V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5 (5), 1294–1300 (2013).

    Article  Google Scholar 

  9. V. K. Unnikrishnan, K. S. Choudhari, S. D. Kulkarni, R. Nayak, V. B. Kartha, and C. Santhosh, “Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification,” RSC Adv. 3 (48), 25872–25880 (2013).

    Article  ADS  Google Scholar 

  10. R. C. Wiens, Wan. Xiong, J. Lasue, and S. Maurice, “Laser-induced breakdown spectroscopy in planetary science,” in Laser-Induced Breakdown Spectroscopy (Elsevier, 2020), p. 441–471.

    Google Scholar 

  11. A. Cousin, O. Forni, S. Maurice, and O. Gasnault, “Laser Induced breakdown spectroscopy library for the Martian environment,” Spectrochim. Acta, Part B 66 (11-12), 805–814 (2011).

    Article  ADS  Google Scholar 

  12. A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects,” Anal. Bioanal. Chem. 387 (3), 749–760 (2007).

    Article  Google Scholar 

  13. E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391 (5), 1961–1968 (2008).

    Article  Google Scholar 

  14. S. J. Rehse, “A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification,” Spectrochim. Acta, Part B 154, 50–69 (2019).

    Article  ADS  Google Scholar 

  15. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Evaluation of key measurement parameters,” Appl. Opt. 46 (13), 2507–2515 (2007).

    Article  ADS  Google Scholar 

  16. S. S. Golik, A. A. Ilyin, M. Yu. Babiy, Yu. S. Biryukova, V. V. Lisitsa, and O. A. Bukin, “Determination of iron in water solution by time-resolved femtosecond laser-induced breakdown spectroscopy,” Plasma Sci. Technol. 17 (11), 975 (2015).

    Article  Google Scholar 

  17. A. A. Il’in, O. A. Bukin, A. V. Bulanov, I. G. Nagornyi, S. S. Golik, and E. N. Baulo, “Spectral-temporal characteristics of plasma induced by a nanosecond laser pulse at the sea water surface,” Atmos. Ocean. Opt. 22 (5), 551–555 (2009).

    Article  Google Scholar 

  18. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31 (1), 90–118 (2016).

    Article  Google Scholar 

  19. J. Xiu, Sh. Zhong, H. Hou, Yu. Lu, and R. Zheng, “Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates,” Appl. Spectrosc. 68 (9), 1039–1045 (2014).

    Article  ADS  Google Scholar 

  20. Y. Tian, Y. Li, L. Wang, F. Huang, Yu. Lu, J. Guo, and R. Zheng, “Laser-induced plasma in water at high pressures up to 40 MPa: A time-resolved study,” Opt. Express 28 (12), 18 122–18 130 (2020).

    Article  Google Scholar 

  21. A. A. Ilyin and S. S. Golik, “Femtosecond laser-induced breakdown spectroscopy of sea water,” Spectrochim. Acta, Part B 87, 192–197 (2013).

    Article  ADS  Google Scholar 

  22. S. S. Golik, A. A. Il’in, E. B. Sokolova, A. V. Kolesnikov, M. Y. Babiy, A. A. Gal’chenko, O. A. Bukin, and Yu. N. Kul’chin, “Determination of detection limits for elements in water by femtosecond laser-induced breakdown spectroscopy,” J. Appl. Spectrosc. 79 (3), 471–476 (2012).

    Article  ADS  Google Scholar 

  23. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36 (2), 277–284 (2004).

    Article  Google Scholar 

  24. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38 (5), 721–729 (1984).

    Article  ADS  Google Scholar 

  25. A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Yu. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “A calibration-free approach for on-site multi-element analysis of metal ions in aqueous solutions by electrodeposition-assisted underwater laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 118, 45–55 (2016).

    Article  ADS  Google Scholar 

  26. S. S. Golik, A. A. Ilyin, M. Yu. Babiy, Yu. S. Biryukova, T. M. Agapova, A. Yu. Myor, O. A. Bukin, and Yu. N. Kulchin, “The influence of laser pulse repetition rate on the intensity of spectral lines in femtosecond laser-induced breakdown spectroscopy of a liquid,” Tech. Phys. Lett. 41 (11), 1044–1046 (2015).

    Article  ADS  Google Scholar 

  27. Y. S. Biryukova, S. S. Golik, A. A. Ilyin, and M. Yu. Babiy, “Influence of energy and repetition rate of the femtosecond laser pulses on the spectral and temporal characteristics of plasma in laser induced breakdown spectroscopy of aqueous solutions,” Proc. SPIE 10035, 100352 (2016).

    Google Scholar 

  28. S. S. Golik, A. A. Ilyin, A. V. Kolesnkov, M. Yu. Babiy, Yu. N. Kul’chin, and O. A. Bukin, “The influence of laser focusing on the intensity of spectral lines in femtosecond laser-induced breakdown spectroscopy of liquids,” Tech. Phys. Lett. 39, 702–704 (2013).

    Article  ADS  Google Scholar 

  29. Y. S. Biryukova, S. S. Golik, A. A. Ilyin, and M. Yu. Babiy, “Determination of the limits of detection of the elements in aqueous solutions by femtosecond libs depending on the laser pulse repetition rate,” Proc. SPIE 10094, 100941 (2017).

    Article  Google Scholar 

  30. H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 78, 62–66 (2012).

    Article  ADS  Google Scholar 

  31. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta, Part B 57 (7), 1141–1153 (2002).

    Article  ADS  Google Scholar 

  32. S. L. Zhong, Yu. Lu, W.-J. Kong, K. Cheng, and R. Zheng, “Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy,” Front. Phys 11 (4), 114202 (2016).

    Article  ADS  Google Scholar 

  33. Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta, Part B 63 (1), 64–68 (2008).

    Article  ADS  Google Scholar 

  34. J. Xiu, Sh. Zhong, H. Hou, Yu. Lu, and R. Zheng, “Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates,” Appl. Spectrosc. 68 (9), 1039–1045 (2014).

    Article  ADS  Google Scholar 

  35. X. Y. Yang, X. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24 (12), 13410–13417 (2016).

    Article  ADS  Google Scholar 

  36. C. Goueguel, D. L. Mclntyre, J. Jain, A. K. Karamalidis, and C. Carson, “Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy,” Appl. Opt. 54 (19), 6071–6079 (2015).

    Article  ADS  Google Scholar 

  37. A. M. Popov, A. N. Drozdova, S. M. Zaytsev, D. I. Biryukova, N. B. Zorov, and T. A. Labutin, “Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31 (5), 1123–1130 (2016).

    Article  Google Scholar 

  38. D. H. Lee, S.-Ch. Han, T.-H. Kim, and J. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83 (24), 9456–9461 (2011).

    Article  Google Scholar 

  39. A. Sarkar, S. K. Aggarwal, K. Sasibhusan, and D. Alamelu, “Determination of sub-ppm levels of boron in ground water samples by laser induced breakdown spectroscopy,” Microkhim. Acta 168 (1–2), 65–69 (2010).

    Article  Google Scholar 

  40. M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71 (1), 73–80 (2007).

    Article  Google Scholar 

  41. I. Apitz and A. Vogel, “Material ejection in nanosecond Er: YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81 (2), 329–338 (2005).

    Article  ADS  Google Scholar 

  42. X. Yang, L. Guo, J. Li, R. Yi, Zh. Hao, M. Shen, R. Zhou, K. Li, X. Li, Yo. Lu, and X. Zeng, “Laser-induced breakdown spectroscopy of liquid solutions: A comparative study on the forms of liquid surface and liquid aerosol,” Appl. Opt. 55 (26), 7406–7411 (2016).

    Article  ADS  Google Scholar 

  43. A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassantein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113 (14), 143305 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-32-90 254—processing of experimental data) and the Ministry of Science and Higher Education of the Russian Federation (state assignment FZNS-2020-0003, no. 0657-2020-0003—determination of detection limits and study of the dynamics of emission lines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Tolstonogova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstonogova, Y.S., Golik, S.S., Mayor, A.Y. et al. Effect of Laser Pulse Repetition Rate on the Detection Limits of the Elemental Composition of Pollutants in Aqueous Solutions by Femtosecond Laser Induced Breakdown Spectroscopy. Atmos Ocean Opt 34, 553–559 (2021). https://doi.org/10.1134/S1024856021060270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060270

Keywords:

Navigation