Skip to main content
Log in

The Umov Effect for Large Irregular-Shaped Particles

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


Results of studying the Umov effect for nonspherical particles large as compared to the incident radiation wavelength are presented. The study is carried out for particles with the maximum size of 100, 140, 170, and 200 µm. The results have been obtained for 210 different refractive indices whose real part varied from 1.3 to 1.6 with a step of 0.5 and the imaginary part varied within the range from 0 to 0.1344. It has been found that the Umov effect occurs for all abovementioned particles provided that the imaginary part of the refractive index is less than 0.001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others


  1. F. Provostaye and P. Desains, “Memoire sur la diffusion de la chaleur,” Annal. Chim. Phys. 3 (34), 192–225 (1852).

    Google Scholar 

  2. N. A. Umov, “Chromatische Depolarisation Durch Lichtzerstreuung,” Phis. Zeits 6, 674–676 (1905).

    Google Scholar 

  3. A. S. Toporets, “About the Umov effect,” Zh. Exp. Teor. Fiz. 20 (6), 390–394 (1950).

    Google Scholar 

  4. M. Wolff, “Theory and application of the polarization-albedo rules,” Icarus 44 (3), 780–792 (1980).

    Article  ADS  Google Scholar 

  5. Yu. G. Shkuratov, N. V. Opanasenko, and M. A. Kreslavsky, “Polarimetric and photometric properties of the Moon: Telescope observation and laboratory simulation. 1. The negative polarization,” Icarus 95 (2), 283–299 (1992).

    Article  ADS  Google Scholar 

  6. M. I. Mishchenko, L. Liu, and J. W. Hovenier, “Effects of absorption on multiple scattering by random particulate media: Exact results,” Opt. Express 15 (20), 13182–13187 (2007).

    Article  ADS  Google Scholar 

  7. E. Zubko, G. Videen, Y. Shkuratov, K. Muinonen, and T. Yamamoto, “The Umov effect for single irregularly shaped particles with sizes comparable with wavelength,” Icarus 212 (1), 403–415 (2011).

    Article  ADS  Google Scholar 

  8. E. Zubko, G. Videen, N. Zubko, and Y. Shkuratov, “Reflectance of micron-sized dust particles retrieved with the Umov law,” J. Quant. Spectrosc. Radiat. Transfer 190, 1–6 (2017).

    Article  ADS  Google Scholar 

  9. B. Lyot, Recherches sur la Polarisation de la Lumiere des Planetes et de Quelques Substances Terrestres (H. Tessier, Orleans, 1929).

    Google Scholar 

  10. N. N. Kiselev, D. F. Lupishko, G. P. Chernova, and Y. G. Shkuratov, “Polarimetry of 1685 Toro asteroid,” Kinem. Fiz. Nebesnykh Tel 6 (2), 77–82 (1990).

    ADS  Google Scholar 

  11. M. Ishiguro, H. Nakayama, M. Kogachi, T. Mukai, R. Nakamura, R. Hirata, and A. Okazak, “Maximum visible polarization of 4179 Toutatis in the apparition of 1996,” Publ. Astron. Soc. Jpn. 49 (5), L31–L34 (1997).

    Article  ADS  Google Scholar 

  12. N. N. Kiselev, V. K. Rosenbush, K. Jockers, F. P. Velichko, N. M. Shakhovskoj, Yu. S. Efimov, D. F. Lupishko, and V. V. Rumyantsev, “Polarimetry of near-earth Asteroid 33342 (1998 WT24). Synthetic phase angle dependence of polarization for the E-type asteroids,” in Proc. of Intern. Conf. “Asteroids, Comets, Meteors—ACM 2002”, 29 July–2 August 2002, Berlin, Germany (ESA Publications Division, Noordwijk, Netherlands, 2002), p. 887–890.

  13. A. V. Burnashov and A. V. Konoshonkin, “Matrix of light scattering on a truncated plate-like droxtal preferably oriented in a horizontal plane,” Atmos. Ocean. Opt. 26 (3), 194–200 (2013).

    Article  Google Scholar 

  14. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York; Chapman and Hall, London, 1957).

  15. A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, and J. Reichardt, “Retrieving the fraction of quazi-horizontally oriented ice crystals from a Raman lidar and a ceilometer,” Opt. Atmos. Okeana 30 (7), 552–557 (2017).

    Article  Google Scholar 

  16. V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Light scattering by large particles with the arbitrary shape within the geometrical optics approximation,” Proc. SPIE—Int. Soc. Opt. Eng. 11208, 1120867 (2019).

  17. A. V. Konoshonkin, N. V. Kustova, V. A. Osipov, A. G. Borovoi, K. Masuda, and H. Ishimoto, and H. Okamoto, “Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction,” Opt. Atmos. Okeana 28 (9), 830–843 (2015).

    Article  Google Scholar 

  18. A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

    Article  ADS  Google Scholar 

  19. V. Shishko, A. Konoshonkin, N. Kustova, D. Timofeev, and A. Borovoi, “Coherent and incoherent backscattering by a single large particle of irregular shape,” Opt. Express 27 (23), 32984–32993 (2019).

    Article  ADS  Google Scholar 

  20. A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning,” Atmos. Ocean. Opt. 29 (3), 252–262 (2016).

    Article  Google Scholar 

  21. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).

    Article  Google Scholar 

  22. A. A. Popov, “Coherent combing of scattered and diffraction fields in problems of light scattering by large crystals,” Dokl. Akad. Nauk SSSR 303 (3), 594–597 (1988).

    ADS  Google Scholar 

  23. A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A 20 (11), 2071–2080 (2003).

    Article  ADS  Google Scholar 

  24. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1492–1508 (2011).

    Article  ADS  Google Scholar 

  25. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35 (33), 6568–6584 (1996).

    Article  ADS  Google Scholar 

Download references


Verification of the Umov effect was supported by the Russian Science Foundation (project no 19-77-10 022). Calculations of light scattering phase functions within the geometrical optics approximation were supported by the Russian Foundation for Basic Research (project nos. 19-45-703 010 and 21-55-53 027). The physical optics method was modernized under the financial support of the Ministry of Science and Higher Eduction (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to I. V. Tkachev, D. N. Timofeev, N. V. Kustova, A. V. Konoshonkin or K. A. Shmirko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, I.V., Timofeev, D.N., Kustova, N.V. et al. The Umov Effect for Large Irregular-Shaped Particles. Atmos Ocean Opt 34, 596–602 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: