Skip to main content
Log in

Passive Satellite Sensing of the Earth’s Surface through Breaks in Cloud Fields

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

An algorithm for estimating the size of the region in which cloudiness affects errors in retrieving the reflection coefficients of the Earth’s surface areas observed through breaks in the cloud field is proposed. The algorithm is based on statistical simulation of the process of radiation transfer through broken stochastic cloudiness by the Monte Carlo method. Two stochastic models of cloud fields are considered: (i) clouds shaped as parallelepipeds and (ii) clouds shaped as paraboloids. The method is tested for two fragments of an actual MODIS image. It is shown that broken cloudiness influences the retrieval error in the reflection coefficient at distances from 5–7 to 25 km from the observation point (depending on situations under consideration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, A. A. Kokhanovsky, V. S. Kuznetsov, and B. Mayer, “The influence of neighbouring clouds on the clear sky reflectance studied with the 3-D transport code RADUG-A,” J. Quant. Spectrosc. Radiat. Transfer 94 (3-4), 405–424 (2005).

    Article  ADS  Google Scholar 

  2. G. Wen, A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, “3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields,” J. Geophys. Res. 112, D13204 (2007).

    ADS  Google Scholar 

  3. T. Varnai and A. Marshak, “MODIS observations of enhanced clear sky reflectance near clouds,” Geophys. Rev. Lett. 36, L06807 (2009).

  4. A. Marshak, G. Wen, Jr. J. A. Coakley, L. A. Remer, N. G. Loeb, and R. F. Cahalan, “A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds,” J. Geophys. Res. 113, 17 (2008).

    Google Scholar 

  5. A. Marshak, K. F. Evans, T. Varnai, and G. Wen, “Extending 3D near-cloud corrections from shorter to longer wavelengths,” J. Quant. Spectrosc. Radiat. Transfer 147, 79–85 (2014).

    Article  ADS  Google Scholar 

  6. M. V. Tarasenkov, I. V. Kirnos, and V. V. Belov, “Observation of the Earth’s surface from the space through a gap in a cloud field,” Atmos. Oceanic Opt. 30 (1), 39–43 (2017).

    Article  Google Scholar 

  7. B. A. Kargin and S. M. Prigarin, “Imitational simulation of cumulus clouds for studying solar radiative transfer in the atmosphere by the Monte Carlo method,” Atmos. Ocean. Opt. 7 (9), 690–696 (1994).

    Google Scholar 

  8. S. M. Prigarin, B. A. Kargin, and U. G. Oppel, “Random fields of broken clouds and their associated direct solar radiation, scattered transmission and albedo,” Pure Appl. Opt. 7, 1389–1402 (1998).

    Article  ADS  Google Scholar 

  9. S. M. Prigarin, T. B. Zhuravleva, and P. V. Volikova, “Poisson model of multilayer broken clouds,” Atmos. Ocean. Opt. 15 (10), 832–838 (2002).

    Google Scholar 

  10. V. E. Zuev and G. A. Titov, Modern Problems of Atmospheric Optics. Vol. 9. Atmospheric Optics and Climate (Spektr, Tomsk, 1996) [in Russian].

  11. A. Marshak, A. Davis, W. Wiscombe, and R. Cahalan, “Radiative smoothing in fractal clouds,” J. Geophys. Res.: Atmos. 100 (D12), 26247–26261 (1995).

    Article  ADS  Google Scholar 

  12. T. B. Zhuravleva, I. M. Nasrtdinov, and T. V. Russkova, “Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field,” Atmos. Ocean. Opt. 30 (1), 103–110 (2017). https://doi.org/10.15372/AOO20160906

    Article  Google Scholar 

  13. G. A. Titov, T. B. Zhuravleva, and V. E. Zuev, “Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation,” J. Geophys. Res: Atmos. 102 (D2), 1819–1832 (1997).

    Article  ADS  Google Scholar 

  14. G. A. Titov, Doctoral Dissertation in Mathematics and Physics (Institute of Atmospheric Optics SB AS USSR, Tomsk, 1988).

  15. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).

    Article  ADS  Google Scholar 

  16. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 1010 (Hanscom AFB, MA, 1988).

    Google Scholar 

  17. A. V. Kozhevnikova, M. V. Tarasenkov, and V. V. Belov, “Parallel computations for solving problems of the reconstruction of the reflection coefficient of the Earth’s surface by satellite data,” Atmos. Ocean. Opt. 26 (4), 326–328 (2013).

    Article  Google Scholar 

  18. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Tarasenkov, M. N. Zonov, V. V. Belov or M. V. Engel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenkov, M.V., Zonov, M.N., Belov, V.V. et al. Passive Satellite Sensing of the Earth’s Surface through Breaks in Cloud Fields. Atmos Ocean Opt 34, 695–703 (2021). https://doi.org/10.1134/S1024856021060245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060245

Keywords:

Navigation