G. Birnbaum, “Microwave pressure broadening and its application to intermolecular forces,” Adv. Chem. Phys. 12, 487–548 (1967).
Google Scholar
J. M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier Science, 2008).
Google Scholar
J. M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, L. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, “Recent advances in collisional effects on spectra of molecular gases and their practical consequences,” J. Quant. Spectrosc. Radiat. Transfer 213, 178–227 (2018).
ADS
Google Scholar
L. A. Rahn and L. Farrow, “Vibrational Spectra and Structure,” in Raman Spectroscopy Sixty Years On, Ed. by H.D. Bist, J.R. During, and J.F. Sullivan (Elsevier, 1989), p. 33–56.
Google Scholar
P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76 (5), 647–661 (1949).
ADS
MATH
Google Scholar
C. J. Tsao and B. Curnutte, “Line widths of pressure-broadened spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–91 (1962).
ADS
Google Scholar
J. S. Murphy and J. E. Boggs, “Collision broadening of rotational absorption lines. I. Theoretical formulation,” J. Chem. Phys. 47 (2), 691–702 (1967).
ADS
Google Scholar
S. C. Mehrotra and J. E. Boggs, “Effect of collision-induced phase shifts on the line widths and line shifts of rotational spectral lines,” J. Chem. Phys. 66 (12), 5306–5312 (1977).
ADS
Google Scholar
D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40 (10), 923–943 (1979).
Google Scholar
M. Afzelius, P. E. Bengtsson, and J. Bonamy, “Semiclassical calculations of collision line broadening in raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120 (18), 8616–8623 (2004).
ADS
Google Scholar
J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of line widths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
ADS
Google Scholar
B. Labani, J. Bonamy, D. Robert, J.-M. Hartmann, and J. Taine, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84 (1), 4256–4267 (1986).
ADS
Google Scholar
J.-M. Hartmann, J. Taine, J. Bonamy, B. Labani, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric-top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range,” J. Chem. Phys. 86 (1), 144–156 (1987).
ADS
Google Scholar
B. Labani, J. Bonamy, D. Robert, and J.-M. Hartmann, “Collisional broadening of rotation-vibration lines for asymmetric-top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87 (5), 2781–2789 (1987).
ADS
Google Scholar
Q. Ma, C. Boulet, and R. H. Tipping, “Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules,” J. Chem. Phys. 140 (24), 244301 (2014).
ADS
Google Scholar
R. G. Gordon, “Theory of the width and shift of molecular spectral lines in gases,” J. Chem. Phys. 44 (8), 3083–3089 (1966). https://doi.org/10.1063/1.1727183
ADS
Article
Google Scholar
R. G. Gordon, “Semiclassical theory of spectra and relaxation in molecular gases,” J. Chem. Phys. 45 (5), 1649–1655 (1966). https://doi.org/10.1063/1.1727808
ADS
Article
Google Scholar
S. V. Ivanov and O. G. Buzykin, “Classical calculation of self-broadening in N2 Raman spectra,” Mol. Phys. 106 (9-10), 1291–1302 (2008).
ADS
Google Scholar
S. V. Ivanov and O. G. Buzykin, “Pressure broadening of the electric dipole and raman lines of CO2 by Argon: Stringent test of the classical theory at different temperatures on a benchmark system,” J. Quant. Spectrosc. Radiat. Transfer 185, 48–57 (2016).
ADS
Google Scholar
S. Green, “Rotational excitation in H2–H2 collisions: Close-coupling calculations,” J. Chem. Phys. 62 (6), 2271–2277 (1975). https://doi.org/10.1063/1.430752
ADS
Article
Google Scholar
R. Shafer and R. G. Gordon, “Quantum scattering theory of rotational relaxation and spectral line shapes in H2–He gas mixtures,” J. Chem. Phys. 58 (12), 5422 (1973).
ADS
Google Scholar
S. Green, J. Boissoles, and C. Boulet, “Accurate collision induced line coupling parameters for the fundamental band of CO in He: Close coupling and coupled state scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 39 (1), 33–42 (1988).
ADS
Google Scholar
S. Green, “Pressure broadening and line coupling in bending bands of CO2,” J. Chem. Phys. 90, 3603–3614 (1989).
ADS
Google Scholar
P. McGuire and D. J. Kouri, “Quantum mechanical close coupling approach to molecular collisions. Jz-conserving coupled states approximation,” J. Chem. Phys. 60, 2488 (1974).
ADS
Google Scholar
R. T. Pack, “Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. Sudden approximations,” J. Chem. Phys. 60 (2), 633 (1974).
ADS
Google Scholar
R. Goldflam and D. J. Kouri, “On accurate quantum mechanical approximation for molecular relaxation phenomena. Averaged Jz-conserving coupled states approximation // J. Chem. Phys. 66, 542 (1977). https://doi.org/10.1063/1.433974
ADS
Article
Google Scholar
T. G. Heil, S. Green, and D. J. Kouri, “The coupled states approximation for scattering of two diatoms,” J. Chem. Phys. 68 (6), 2562 (1978).
ADS
Google Scholar
D. Lisak, J. T. Hodges, and R. Ciurylo, “Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A: 73, 012507 (2006).
ADS
Google Scholar
F. Thibault, S. V. Ivanov, O. G. Buzykin, L. Gomez, M. Dhyne, P. Joubert, and M. Lepere, “Comparison of classical, semiclassical and quantum methods in hydrogen broadening of acetylene lines,” J. Quant. Spectrosc. Radiat. Transfer 112 (12), 1429–1437 (2011).
ADS
Google Scholar
L. Gomez, S. V. Ivanov, O. G. Buzykin, and F. Thibault, “Comparison of quantum, semi-classical and classical methods in hydrogen broadening of nitrogen lines,” J. Quant. Spectrosc. Radiat. Transfer 112 (12), 1942–1949 (2011).
ADS
Google Scholar
F. Thibault, R. Z. Martinez, D. Bermejo, and L. Gomez, “Collisional line widths of autoperturbed N2: Measurements and quantum calculations,” J. Quant. Spectrosc. Radiat. Transfer 112 (16), 2542–2551 (2011).
ADS
Google Scholar
F. Thibault, L. Gomez, S. V. Ivanov, O. G. Buzykin, and Ch. Boulet, “Comparison of quantum, semi-classical and classical methods in the calculation of nitrogen self-broadened widths,” J. Quant. Spectrosc. Radiat. Transfer 113 (15), 1887–1897 (2012).
ADS
Google Scholar
S. V. Ivanov and O. G. Buzykin, “Precision considerations of classical and semi-classical methods used in collision line broadening calculations: Different linear molecules perturbed by argon,” J. Quant. Spectrosc. Radiat. Transfer 119, 84–94 (2013).
ADS
Google Scholar
K. Esteki, A. Predoi-Cross, C. Povey, S. Ivanov, A. Ghoufi, F. Thibault, and M.-A. H. Smith, “Room temperature self- and H2-broadened line parameters of carbon monoxide in the first overtone band: Theoretical and revised experimental results,” J. Quant. Spectrosc. Radiat. Transfer 203, 309–324 (2017).
ADS
Google Scholar
T. L. Andreeva, “Diffusion equation for density matrix,” Zh. Exp. Teor. Fiz. 54, 641–651 (1968).
Google Scholar
V. A. Alekseev, T. L. Andreeva, and I. I. Sobel’man, “The quantum kinetic equation method for atoms and molecules and its application to the calculaton of optical characteristics of gases,” JETP 35 (2), 614–626 (1972).
Google Scholar
V. A. Alekseev, T. L. Andreeva, and I. I. Sobel’man, “Contributions to the theory of nonlinear power resonances in gas lasers,” JETP 37 (3), 813–822 (1973).
Google Scholar
P. R. Berman, “Theory of collision effects on atomic and molecular line shapes,” Appl. Phys. 6, 283–296 (1975).
ADS
Google Scholar
S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Atomic and Molecular Spectra (Nauka, Novosibirsk, 1979) [in Russian].
Google Scholar
R. Blackmore, “A modified Boltzmann kinetic equation for line shape functions,” J. Chem. Phys. 87 (2), 791–800 (1987).
ADS
Google Scholar
E. G. Pestov and S. G. Rautian, “Field narrowing of spectral lines,” JETP 37 (6), 2032–2045 (1973).
Google Scholar
E. G. Pestov, “The theory of quantum system relaxation in strong electromagnetic field,” Tr. FIAN 187, 60–116 (1988).
Google Scholar
D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leniingrad, 1975) [in Russian].
P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral line profiles,” J. Quant. Spectrosc. Radiative Transfer 12, 1331–1342 (1972).
ADS
Google Scholar
J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in the theory of combined doppler and pressure broadening—I. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14 (7), 555–590 (1974).
ADS
Google Scholar
S. G. Rautian, “Universal asymptotic profile of a spectral line under a small Doppler broadening,” Opt. Spectroscop. 90 (1), 30–40 (2001).
ADS
Google Scholar
V. P. Kochanov, “line profiles for the description of line mixing, narrowing, and dependence of relaxation constants on speed,” J. Quant. Spectrosc. Radiat. Transfer 112 (12), 1931–1941 (2011).
ADS
Google Scholar
M. Baranger, “Simplified quantum-mechanical theory of pressure broadening,” Phys. Rev. 111 (2), 481–493 (1958).
ADS
MathSciNet
MATH
Google Scholar
L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1974) [in Russian].
Google Scholar
N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).
ADS
Google Scholar
V. P. Kochanov, “On parameterization of spectral line profiles including the speed-dependence in the case of gas mixture,” J. Quant. Spectrosc. Radiat. Transfer 189, 18–23 (2017).
ADS
Google Scholar
A. S. Pine and T. Gabard, “Speed-dependent broadening and line mixing in CH4 perturbed by Ar and N2 from multispectrum fits,” J. Quant. Spectrosc. Radiat. Transfer 66, 69–92 (2000).
ADS
Google Scholar
M. A. Koshelev, M. Yu. Tretyakov, F. Rohart, and J.‑P. Bouanich, “Speed dependence of collisional relaxation in ground vibrational state of OCS: Rotational behavior,” J. Chem. Phys. 136, 124316–11 (2012).
ADS
Google Scholar
T. Yu. Vu and T. Omura, Qunatum Theory of Scattering (Nauka, Moscow, 1969) [in Russian]
Google Scholar
R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
ADS
Google Scholar
J. P. Wittke and R. H. Dicke, “Redetermination of the hyperfine splitting in the ground state of atomic hydrogen,” Phys. Rev. 103, 620–631 (1956).
ADS
Google Scholar
L. Galatry, “Simultaneous effect of doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
ADS
MATH
Google Scholar
M. Nelkin and A. Ghatak, “Simple binary collision model for Van Hove’s Gs(R, T),” Phys. Rev. 135, A4–A9 (1964). https://doi.org/10.1103/PhysRev.135.A4
ADS
MathSciNet
Article
Google Scholar
S. G. Rautian and I. I. Sobel’man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Uspekhi 9, 701 (1967). https://doi.org/10.1070/PU1967v009n05ABEH003212
ADS
Article
Google Scholar
R. Ciurylo, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A: 58, 1029–1039 (1998).
ADS
Google Scholar
V. P. Kochanov, “Manifestations of small-angle molecular scattering in spectral line profiles,” JETP 118 (3), 335–350 (2014).
ADS
Google Scholar
H. Jozwiak, F. Thibault, N. Stolarczyk, and P. Wcislo, “Ab initio line-shape calculations for the S and O branches of H2 perturbed by He,” J. Quant. Spectrosc. Radiat. Transfer 219, 313–322 (2018).
ADS
Google Scholar
K. Stankiewicz, H. M. Jozwiak, M. Gancewski, N. Stolarczyk, F. Thibault, and P. Wcislo, “Ab initio calculations of collisional line-shape parameters and generalized spectroscopic cross-sections for rovibrational dipole lines in HD perturbed by He,” J. Quant. Spectrosc. Radiat. Transfer 254, 107194 (2020).
Google Scholar
A. S. Pine, “N2 and Ar broadening and line mixing in the P- and R-branches of the ν3 band of CH4,” J. Quant. Spectrosc. Radiat. Transfer 57 (2), 157–176 (1997).
ADS
Google Scholar
C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr, and nitrogen in the spectral range 1850–2140 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
ADS
Google Scholar
V. P. Kochanov and I. Morino, “Methane line shapes and spectral line parameters in the 5647–6164 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 206, 313–322 (2018).
ADS
Google Scholar
V. P. Kochanov, “Analytical Approximations for Speed-Dependent Spectral Line Profiles,” J. Quant. Spectrosc. Radiat. Transfer 112 (18), 2762–2770 (2011).
ADS
Google Scholar
V. P. Kochanov, “On one-dimensional velocity approximation for speed-dependent spectral line profiles,” J. Quant. Spectrosc. Radiat. Transfer 121, 105–110 (2013).
ADS
Google Scholar
V. P. Kochanov, “Combined effect of small- and large-angle scattering collisions on a spectral line shape,” J. Quant. Spectrosc. Radiat. Transfer 159, 32–38 (2015).
ADS
Google Scholar
V. P. Kochanov, “Comparison of spectral line profiles in hard and soft collision models,” Atmos. Ocean. Opt. 32 (3), 257–265 (2019).
Google Scholar
V. K. Matskevich, “Depolarizing collisions of atoms and spectral line broadening,” Opt. Spektroskop. 37, 411–419 (1974).
Google Scholar
H. M. Pickett, “Effects of velocity averaging on the shape of absorption lines,” J. Chem. Phys. 73 (12), 6090–6094 (1980).
ADS
Google Scholar
S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16 (1), 15–18 (1972).
ADS
Google Scholar
L. S. Vasilenko, V. P. Kochanov, and V. P. Chebotayev, “Nonlinear dependence of optical resonance widths at CO2 transitions on pressure,” Opt. Commun. 20 (3), 409 (1977).
ADS
Google Scholar
V. P. Kochanov, S. G. Rautian, and A. M. Shalagin, “Broadening of nonlinear resonances by velocity-changing collisions,” JETP 45 (4), 1358–1374 (1977).
Google Scholar
V. P. Kochanov and L. N. Sinitsa, “Retrieval of total scattering cross sections of molecules from inhomogeneously broadened absorption lines,” J. Spectrosc. (2018). https://doi.org/10.1155/2018/2098625
I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, Auwera J. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITR-AN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
ADS
Google Scholar
J. Lamouroux, R. R. Gamache, A. L. Laraia, J.-M. Hartmann, and Ch. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2. III: Self collisions,” J. Quant. Spectrosc. Radiat. Transfer 113, 1536–1546 (2012).
ADS
Google Scholar
K. I. Arshinov, O. N. Krapivnaya, V. V. Nevdakh, and V. N. Shut, “Collisional broadening of vibrational-rotational CO2 lines by buffer gases,” Atmos. Ocean. Opt. 33 (3), 229–237 (2020).
Google Scholar
R. R. Gamache and A. L. Laraia, “N2-, O2-, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of H2
16O,” J. Mol. Spectrosc. 257 (2), 116–127 (2009).
ADS
Google Scholar
G. Wagner, M. Birk, R. R. Gamache, and J. M. Hartmann, “Collisional parameters of H2O lines: Effect of temperature,” J. Quant. Spectrosc. Radiat. Transfer 92, 211–230 (2005).
ADS
Google Scholar
V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford, Ch. E. Miller, B. J. Drouin, V. H. Payne, Sh. Yu, M.-A. H. Smith, A. W. Mantz, and R. R. Gamache, “Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-µm region,” J. Quant. Spectrosc. Radiat. Transfer 177, 117–144 (2016).
ADS
Google Scholar
Handbook on Special Functions, Ed. BY M. Abramovits and I. Stigan (Nauka, Moscow, 1979) [in Russian].
Google Scholar
S. G. Rautian, “Investigation of elastic scattering by nonlinear spectroscopy methods, Sov. J. Quantum Electron. 8 (8), 970–973 (1978).
ADS
Google Scholar
V. P. Kochanov, “Collision line narrowing and mixing of multiplet spectra,” J. Quant. Spectrosc. Radiat. Transfer 66 (4), 313–325 (2000).
ADS
Google Scholar
V. P. Kochanov and I. V. Ptashnik, “Approximation of the width of the line profile narrowed by collisions,” Opt. Spectroscop. 89 (5), 678–673 (2000).
ADS
Google Scholar
F. M. Mourits and F. N. A. Rummens, “A critical evaluation of Lennard-Jones and Stockmayer potential parameters and of some correlation methods,” Can. J. Chem. 55 (16), 3007–3020 (1977).
Google Scholar