Skip to main content
Log in

The Influence of Dust Transport on the Intensity of Cyanobacterial Bloom in the Caspian Sea

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The events of the dust aerosol transport to the water and coastal areas of the Caspian Sea during 2008–2010 are analyzed. This aerosol type is shown to be an additional source of biogenic elements in the surface layer of the sea. The comparative analysis of the optical characteristics of the northern, middle, and southern parts of the Caspian Sea, which significantly differ in hydrometeorological conditions and, hence, in the contribution of various factors which determine the possibility of anomalous cyanobacterial blooming, has been carried out. The effect of dust aerosol on the bloom of cyanobacteria is maximal in the southern part of the region under study. The results of the study of algal bloom anomalies in the Caspian Sea region are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. M. Emel’yanov and L. V. Kol’, “Transfer of wind-borne dust and its role in the sedimentogenesis in the Atlantic Ocean,” Litolog. Poleznye iskopaemye, No. 2, 3–15 (1979).

  2. A. P. Lisitzin, “Arid sedimentation in the oceans and atmospheric particulate matter,” Rus. Geol. Geophys. 52 (10), 1398–1439 (2011).

    Article  Google Scholar 

  3. A. P. Lisitsyn, World Ocean. Vol. II. Ocean Physics, Chemistry, and Biology. Sedimentation in Ocean and Interaction between Earth’s Geospheres (Nauchny mir, 2014) [in Russian].

  4. A. P. Lisitsyn, ”A marginal filter of the oceans,” Okeanologiya 34 (5), 735–747 (1994).

    Google Scholar 

  5. A. Avila and J. Penuelas, “Increasing frequency of Saharan rains over northeastern Spain and its ecological consequences,” Sci. Total Environ. 228 (2-3), 153–156 (1999).

    Article  ADS  Google Scholar 

  6. C. Darwin, geological observations on the volcanic islands visited during the voyage of H. M. S. Beagle, together with some brief notices on the geology of Australia and the Cape of Good Hope; being the second part of the Geology of the Voyage of the Beagle, under the command of Capt. Fitzroy, R.N., during the years 1832 to 1836,” Quat. J. Geol. Soc. 1 (1), 556–558 (1845).

    Article  Google Scholar 

  7. C. Darwin, Geological Observations on the Volcanic Islands, Visited During the Voyage of HMS Beagle: Together with Some Brief Notices on the Geology of Australia and the Cape of Good Hope (Cambridge University Press, Cambridge, 2011).

    Book  Google Scholar 

  8. C. Guo, X. Xia, P. Pitta, B. Herut, E. Rahav, I. Berman-Frank, A. Giannakourou, A. Tsiola, T. M. Tsagaraki, and H. Liu, “Shifts in microbial community structure and activity in the ultra-oligotrophic eastern Mediterranean Sea driven by the deposition of Saharan Dust and European aerosols,” Front. Mar. Sci. 3, 170 (2016). https://doi.org/10.3389/fmars.2016.00170

    Article  Google Scholar 

  9. R. Gallisai, PhD Thesis (Universitat Politecnica de Catalunya, Barcelona, 2016).

  10. E. Pulido-Villena, T. Wagener, and C. Guieu, “Bacterial response to dust pulses in the western Mediterranean: Implications for carbon cycling in the oligotrophic ocean,” Global Biogeochem. Cycl. 22 (1) (2008). https://doi.org/10.1029/2007GB003091

  11. E. Marañén, A. Fernández, B. Mourino-Carballido, S. Martínez-García, E. Teira, P. Cermeno, P. Chouciño, S. Martínez-Rodríguez, E. Teira, E. Fernández, A. Calvo-Díaz, Anxelu G. Xosé, Bode A. Morán, E. Moreno-Ostos, M. M. Varela, M. Patey, and E. P. Achterber, “Degree of oligotrophy controls the response of microbial plankton to Saharan Dust,” Limnol. Oceanog. 55 (6), 2339–2352 (2010).

    Article  ADS  Google Scholar 

  12. T. Yli-Tuomi, L. Venditte, P. K. Hopke, M. S. Basunia, S. Landsberger, Y. Viisanen, and J. Paatero, “Composition of the Finnish Arctic aerosol: Collection and analysis of historic filter samples,” Atmos. Environ. 37 (17), 2355–2364 (2003).

    Article  ADS  Google Scholar 

  13. A. A. Vinogradova, “Anthropogenic pollutants in the Russian Arctic atmosphere: Sources and sinks in spring and summer,” Atmos. Environ. 34 (29-30), 5151–5160 (2000).

    Article  ADS  Google Scholar 

  14. V. P. Shevchenko, A. P. Lisitsyn, A. A. Vinogradova, K. P. Kutsenogii, V. V. Smirnov, and R. Shtain, “Arctic aerosols and their environmental effect,” in Abstract of the Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2006), p. 148–184 [in Russian].

  15. O. B. Popovicheva, A. P. Makshtas, V. V. Movchan, N. M. Persiantseva, M. A. Timofeev, and N. M. Sitnikov, “Aerosol component of the near-water air layer from observations in “Sever-2015” expedition,” Problemy Arktiki Antarktiki, No. 4, 57–65 (2017).

    Article  Google Scholar 

  16. V. A. Krikun, Candidate’s Dissertation in Mathematics and Physics (Vladivostok, 2008).

  17. M. V. Bolgov, G. F. Krasnozhon, and A. A. Lyubushin, Caspian Sea: Extreme Geological Events (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  18. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buts, A. Setzer, F. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajama, F. Lavenu, I. Jankoviak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ., No. 66, 1–16 (1998).

  19. http://ready.arl.noaa.gov/HYSPLIT.php. Cited May 7, 2021.

  20. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).

    Article  ADS  Google Scholar 

  21. A. Ansmann and D. Muller, “Lidar and atmospheric aerosol particles,” in Lidar (Springer, New York, 2005), p. 105–141.

    Google Scholar 

  22. D. Muller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007).

    Article  ADS  Google Scholar 

  23. A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, C. R. Trepte, R. A. Ferrare, K. Lee, C. A. Hostetler, C. Kittaka, R. R. Rogers, R. E. Kuehn, and Z. Liu, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol. 26, 1994–2014 (2009). https://doi.org/10.1175/2009JTECHA1231.1

    Article  ADS  Google Scholar 

  24. V. V. Suslin, V. Kh. Slabakova, D. V. Kalinskaya, S. F. Pryakhina, and N. I. Golovko, “Optical features of the Black Sea aerosol and the sea water upper layer based on in situ and satellite measurements,” Phys. Oceanogr., No. 1, p. 20–32 (2016).

  25. S. A. Lisenko, “A fast algorithm for retrieving maps of atmospheric pollution by fine particulate matter from multispectral satellite images,” Atmos. Ocean. Opt. 31 (1), 60–71 (2018).

    Article  Google Scholar 

  26. V. V. Belov, M. V. Tarasenkov, M. V. Engel’, Yu. V. Gridnev, A. V. Zimovaya, E. S. Poznakharev, V. N. Abramochkin, A. V. Fedosov, and A. N. Kudryavtsev, “Atmospheric correction of satellite images of the Earth’s surface in the optical wavelength range. Optical communication based on scattered radiation,” Atmos. Ocean. Opt. 33 (1), 80–84 (2020).

    Article  Google Scholar 

  27. A. A. Aleskerova, A. A. Kubryakov, S. V. Stanichny, P. N. Lishaev, and A. I. Mizyuk, “Cyanobacteria bloom in the Azov Sea according to Landsat data,” Izv., Atmos. Ocean. Phys. 55 (9), 1416–1426 (2019).

    Article  Google Scholar 

  28. D. V. Kalinskaya and A. A. Aleskerova, “Abnormal optical parameters of the coastal waters in the western Black Sea in spring-summer 2020,” in Abstr. of the XXVII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2021), p. 51 [in Russian].

  29. A. V. Varenik and D. V. Kalinskaya, “The effect of dust transport on the concentration of chlorophyll-a in the surface layer of the Black Sea,” Appl. Sci. 11, 4692 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 20-35-70 034—determination of cyanobacteria bloom, and no. 20-54-56 053—processing of satellite images on the presence of cyanobacteria blooms in the southern part of the Caspian Sea) and by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 0555-2021-0006—processing of satellite images for the presence of dust aerosol, and nos. 0827-2021-0002 and 0555-2021-0003—monitoring with the use of remote sensing data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kalinskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinskaya, D.V., Medvedeva, A.V. & Aleskerova, A.A. The Influence of Dust Transport on the Intensity of Cyanobacterial Bloom in the Caspian Sea. Atmos Ocean Opt 34, 611–616 (2021). https://doi.org/10.1134/S1024856021060154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060154

Keywords:

Navigation