D. Marks and P. S. Carney, “Near-field diffractive elements,” Opt. Lett. 30 (14), 1870–1872 (2005). https://doi.org/10.1364/OL.30.001870
ADS
Article
Google Scholar
G. Chen, Z.Q. Wen, and C.-W. Qiu, “Superoscillation: From physics to optical applications,” Light: Sci. Appl. 8 (56), 2–23 (2019). https://doi.org/10.1038/s41377-019-0163-9
Article
Google Scholar
B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996). https://doi.org/10.1063/1.112341
ADS
Article
Google Scholar
I. V. Minin and O. V. Minin, “Recent trends in optical manipulation inspired by mesoscale photonics and diffraction optics,” J. Biomed. Photon. Eng. 6 (2 P), 020301 (2020). https://doi.org/10.18287/JBPE20.06.020301
C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89 (19) (2006). https://doi.org/10.1063/1.2374809
R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23 (3), 567–571 (2006). https://doi.org/10.1364/JOSAA.23.000567
ADS
Article
Google Scholar
I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, “Investigation of the resolution of phase correcting Fresnel lenses with small values of F/D and subwavelength focus,” Comput. Opt. 30, 65–68 (2006).
Google Scholar
I. V. Minin and O. V. Minin, “3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit,” Chin. Opt. Lett. 12 (6), 060014 (2014).
ADS
Article
Google Scholar
R. G. Mote, S. F. Yu, B. K. Ng, W. Zhou, and S. P. Lau, “Near-field properties of zone plates in visible regime—new insights,” Opt. Express 16 (13), 9554–9564 (2008). https://doi.org/10.1364/OE.16.009554
ADS
Article
Google Scholar
F. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007). https://doi.org/10.1063/1.2769942
ADS
Article
Google Scholar
D. Werdenausen, S. Burger, I. Staude, T. Pertsch, and M. Decker, “Dispersion-engineered nanocomposites enable achromatic diffractive optical elements,” Optica 6 (8), 1031–1038 (2019). https://doi.org/10.1364/OPTICA.6.001031
ADS
Article
Google Scholar
J. Wu, X. Cui, L. M. Lee, and C. Yang, “The application of Fresnel zone plate based projection in optofluidic microscopy,” Opt. Express 16 (2), 15595–15602 (2008). https://doi.org/10.1364/OE.16.015595
ADS
Article
Google Scholar
W. Xie, J. Yang, D. Chen, J. Huang, X. Jiang, and J. He, “On-chip multiwavelength achromatic thin flat lens,” Opt. Commun. 484, 126645 (2021). https://doi.org/10.1016/j.optcom.2020.126645
Article
Google Scholar
Y. Zhang, C. Zheng, Y. Zhuang, and X. Ruan, “Analysis of nearfield subwavelength focusing of hybrid amplitude-phase Fresnel zone plates under radially polarized illumination,” J. Opt. 16 (1), 015703 (2014). https://doi.org/10.1088/20408978/16/1/015703
ADS
Article
Google Scholar
P. D. Kearney and A. G. Klein, “Resolving power of zone plates,” J. Mod. Opt. 36 (3), 361–367 (1989). https://doi.org/10.1080/09500348914550391
ADS
Article
Google Scholar
I. V. Minin and O. V. Minin, “FZP lens array,” in Basic Principles of Fresnel Antenna Arrays. Lecture Notes Electrical Engineering (Springer, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-79559-9_3
Book
MATH
Google Scholar
A. R. Jones, “The focal properties of phase zone plates,” J. Phys. D: Appl. Phys. 2, 1789–1791 (1969). https://doi.org/10.1088/0022-3727/2/12/124
ADS
Article
Google Scholar
Yu. E. Geints, O. V. Minin, and I. V. Minin, “Apodization-assisted subdiffraction near-field localization in 2D phase diffraction grating,” Annal. Phys. 531, 1900033 (2019). https://doi.org/10.1002/andp.201900033
ADS
Article
Google Scholar