Skip to main content

Light Focusing by a Binary Fresnel Zone Plate with Various Design Features

Abstract

Results of numerical simulation of binary phase Fresnel zone plates (FZPs) with a mesowave length size and a large aperture angle (NA ∼ 1) are presented. The study is aimed at revealing the main features in the formation of the spatial near-field structure, as well as optimization of FZP parameters for obtaining maximally intense foci. It is shown that dimensional parameters of the FZP focal region turn out to be sensitive both to the zone etch depth and to the type of constructive design of the plate. An increase in the number of plate zones leads to the formation of local outer foci of the plate with a higher intensity.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. D. Marks and P. S. Carney, “Near-field diffractive elements,” Opt. Lett. 30 (14), 1870–1872 (2005). https://doi.org/10.1364/OL.30.001870

    ADS  Article  Google Scholar 

  2. G. Chen, Z.Q. Wen, and C.-W. Qiu, “Superoscillation: From physics to optical applications,” Light: Sci. Appl. 8 (56), 2–23 (2019). https://doi.org/10.1038/s41377-019-0163-9

    Article  Google Scholar 

  3. B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996). https://doi.org/10.1063/1.112341

    ADS  Article  Google Scholar 

  4. I. V. Minin and O. V. Minin, “Recent trends in optical manipulation inspired by mesoscale photonics and diffraction optics,” J. Biomed. Photon. Eng. 6 (2 P), 020301 (2020). https://doi.org/10.18287/JBPE20.06.020301

  5. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89 (19) (2006). https://doi.org/10.1063/1.2374809

  6. R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23 (3), 567–571 (2006). https://doi.org/10.1364/JOSAA.23.000567

    ADS  Article  Google Scholar 

  7. I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, “Investigation of the resolution of phase correcting Fresnel lenses with small values of F/D and subwavelength focus,” Comput. Opt. 30, 65–68 (2006).

    Google Scholar 

  8. I. V. Minin and O. V. Minin, “3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit,” Chin. Opt. Lett. 12 (6), 060014 (2014).

    ADS  Article  Google Scholar 

  9. R. G. Mote, S. F. Yu, B. K. Ng, W. Zhou, and S. P. Lau, “Near-field properties of zone plates in visible regime—new insights,” Opt. Express 16 (13), 9554–9564 (2008). https://doi.org/10.1364/OE.16.009554

    ADS  Article  Google Scholar 

  10. F. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007). https://doi.org/10.1063/1.2769942

    ADS  Article  Google Scholar 

  11. D. Werdenausen, S. Burger, I. Staude, T. Pertsch, and M. Decker, “Dispersion-engineered nanocomposites enable achromatic diffractive optical elements,” Optica 6 (8), 1031–1038 (2019). https://doi.org/10.1364/OPTICA.6.001031

    ADS  Article  Google Scholar 

  12. J. Wu, X. Cui, L. M. Lee, and C. Yang, “The application of Fresnel zone plate based projection in optofluidic microscopy,” Opt. Express 16 (2), 15595–15602 (2008). https://doi.org/10.1364/OE.16.015595

    ADS  Article  Google Scholar 

  13. W. Xie, J. Yang, D. Chen, J. Huang, X. Jiang, and J. He, “On-chip multiwavelength achromatic thin flat lens,” Opt. Commun. 484, 126645 (2021). https://doi.org/10.1016/j.optcom.2020.126645

    Article  Google Scholar 

  14. Y. Zhang, C. Zheng, Y. Zhuang, and X. Ruan, “Analysis of nearfield subwavelength focusing of hybrid amplitude-phase Fresnel zone plates under radially polarized illumination,” J. Opt. 16 (1), 015703 (2014). https://doi.org/10.1088/20408978/16/1/015703

    ADS  Article  Google Scholar 

  15. P. D. Kearney and A. G. Klein, “Resolving power of zone plates,” J. Mod. Opt. 36 (3), 361–367 (1989). https://doi.org/10.1080/09500348914550391

    ADS  Article  Google Scholar 

  16. I. V. Minin and O. V. Minin, “FZP lens array,” in Basic Principles of Fresnel Antenna Arrays. Lecture Notes Electrical Engineering (Springer, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-79559-9_3

    Book  MATH  Google Scholar 

  17. A. R. Jones, “The focal properties of phase zone plates,” J. Phys. D: Appl. Phys. 2, 1789–1791 (1969). https://doi.org/10.1088/0022-3727/2/12/124

    ADS  Article  Google Scholar 

  18. Yu. E. Geints, O. V. Minin, and I. V. Minin, “Apodization-assisted subdiffraction near-field localization in 2D phase diffraction grating,” Annal. Phys. 531, 1900033 (2019). https://doi.org/10.1002/andp.201900033

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Geints or E. K. Panina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Panina, E.K., Minin, O.V. et al. Light Focusing by a Binary Fresnel Zone Plate with Various Design Features. Atmos Ocean Opt 34, 714–721 (2021). https://doi.org/10.1134/S1024856021060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060099

Keywords:

  • Fresnel zone plate
  • light focusing
  • focal spot