Skip to main content
Log in

Minimization of Systematic Errors of an Ultrasonic Thermometer Due to Signal Time Delays and Temperature Variations in the Design

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The joint influence of the unaccounted time delay of signal transmission between “transmitter–sound receiver” pairs and temperature changes in the distances between them on the systematic error of sonic temperature measurements is considered. Analytical relations for estimating the considered error and the results of its calculation are presented. A method of calibration for such devices in a climate chamber using reference measuring instruments is described. The method allows one to reduce this influence by more than an order of magnitude in the range of measured temperatures from −70 to +50°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. International standard: ISO 16 622:2002. Meteorology—Sonic Anemometers/Thermometers—Acceptance Test Methods for Means Wind Measurements.

  2. A. Ya. Bogushevich, “Ultrasonic methods for estimation of atmospheric meteorological and turbulence parameters,” Atmos. Ocean. Opt. 12 (2), 164–169 (1999).

    Google Scholar 

  3. A. A. Tikhomirov, “Ultrasonic anemometers and thermometers for measuring fluctuations of air flux velocity and temperature. Review,” Opt. Atmos. Okeana 23 (7), 585–600 (2010).

    Google Scholar 

  4. http://uzmu.phys.msu.ru/abstract/2014/6/14308/. Cited June 29, 2021.

  5. W. Barrett and E. Suomi, “preliminary report on temperature measurement by sonic means,” J. Meteorol. 6 (4), 273–276 (1949).

    Article  Google Scholar 

  6. N. P. Fateev, “Acoustic method for air temperature measurement,” Trudy GGO, Is. 52, 114 (1955).

    Google Scholar 

  7. R. M. Schotland, “The measurement of wind velocity by sonic means,” J. Meteorol., 386–390 (1955).

  8. A. S. Gurvich, “Acoustic microanemometer for the study of turbulence icrostructure,” Akust. Zh. 5 (3), 368–369 (1959).

    Google Scholar 

  9. J. C. Kaimal and J. A. Businger, “A continuous wave sonic anemometer-thermometer,” J. Appl. Meteorol. 2 (2), 156–164 (1963).

    Article  ADS  Google Scholar 

  10. J. C. Kaimal, J. C. Wyngaard, and D. W. Haugen, “Deriving power spectra from three-component sonic anemometer,” J. Appl. Meteorol. 7, 827–837 (1968).

    Article  ADS  Google Scholar 

  11. J. C. Kaimal and J. E. Gaynor, “Another look at sonic thermometry,” Bound. Layer Meteorol. 56, 410–418 (1991).

    Article  ADS  Google Scholar 

  12. Y. Mitsuta, “Sonic anemometer-thermometer for general use,” J. Meteorol. Soc. Jpn. 44 (1), 12–23 (1966).

    Article  ADS  Google Scholar 

  13. T. Hanafusa, T. Fujitani, Y. Koboi, and Y. Mitsuta, “A new type sonic anemometer-thermometer for field operation,” Meteorol. Geophys. 33, 1–19 (1982).

    Article  Google Scholar 

  14. J. A. Businger, M. Miyake, A. J. Dyer, and E. F. Bradley, “On the direct determination of the turbulent heat flux near the ground,” J. Apll. Meteorol. 6 (6), 1025–1032 (1967).

    Article  ADS  Google Scholar 

  15. L. V. Antoshkin, O. N. Emaleev, V. P. Lukin, V. M. Sukonkina, V. V. Khatsko, and A. P. Yankov, “Instruments for meteorological research in the atmosphere,” Pribory Tech. Exp., No. 3, 240–241 (1986).

  16. G. Ya. Patrushev, A. P. Rostov, and A. P. Ivanov, “Automated ultrasonic anemometer-thermometer for measuring the turbulent characteristics in the ground atmospheric layer,” Atmos. Ocean. Opt. 7 (11-12), 890–891 (1994).

    Google Scholar 

  17. A. P. Rostov, “Ultrasonic system for studying spatiotemporal characteristics of wind and temperature fields,” Atmos. Ocean. Opt. 12 (2), 148–152 (1999).

    Google Scholar 

  18. A. A. Azbukin, A. Ya. Bogushevich, V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “Hardware-software complex for studying the structure of the fields of temperature and wind turbulent fluctuations,” Atmos. Ocean. Opt. 31 (5), 479–485 (2018).

    Article  Google Scholar 

  19. V. Nosov, V. Lukin, E. Nosov, A. Torgaev, and A. Bogushevich, “Measurement of atmospheric turbulence characteristics by the ultrasonic anemometers and calibration processes,” Atmosphere 10, 460 (2019).

    Article  ADS  Google Scholar 

  20. http://meteosap.ru/. Cited June 29, 2021.

  21. https://metek.de/product-group/sonic-anemometer/. Cited June 29, 2021.

  22. http://www.gill.co.uk/. Cited June 29, 2021.

  23. www.biral.com/pcat/ultrasonic-sensors/. Cited June 29, 2021.

  24. http://www.vaisala.com. Cited June 29, 2021.

  25. www.youngusa.com/product/responseone-ultrasonic-anemometer/. Cited June 29, 2021.

  26. http://belfortinstrument.com/ambient-meteorological/ wind/. Cited June 29, 2021.

  27. http://www.climatronics.com/Applications/Sensors-and-Components/index.php. Cited June 29, 2021.

  28. www.atmos-meteo.com/mesure/instruments-de-meteorologie.html. Cited June 29, 2021.

  29. https://fttechnologies.com/wind-sensors/ft7-series/. Cited June 29, 2021.

  30. www.campbellsci.com/heat-vapor-co2-flux. Cited June 29, 2021.

  31. www.thiesclima.com/de/Produkte/Wind-Ultraschall-Anemometer/. Cited June 29, 2021.

  32. http://typhoon-tower.obninsk.org/ru/ADAT3M.html. Cited June 29, 2021.

  33. www.adventspb.ru/napravleniia-deiatel-nosti/analiticheskie-i-izmeritel-nye-pribory/komplekt-meteorologicheskii-avtomatizirovannyi/. Cited June 29, 2021.

  34. Atmosphere. Handbook (Gidrometeoizdat, Leningrad, 1991) [in Russian].

  35. A. A. Azbukin, A. Ya. Bogushevich, V. I. Il’ichevskii, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “Automated ultrasonic meteorological complex AMK-03,” Meteorol. Gidrol., No. 11, p. 89–97 (2006).

  36. A. A. Azbukin, A. Ya. Bogushevich, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “A field version of the AMK-03 automated ultrasonic meteorological complex,” Rus. Meteorol. Hydrol. 34 (2), 133–136 (2009).

    Article  Google Scholar 

  37. A. A. Tikhomirov, V. A. Korol’kov, A. Ya. Bogushevich, A. A. Azbukin, and V. D. Shelevoi, “Onboard meteorologicalcomplex based on multipurpose track-type and wheeled vehicles,” Vestn. Akad. Voen. Nauk. 24 (3), 144–148 (2008).

    Google Scholar 

  38. A. A. Azbukin, A. Ya. Bogushevich, A. A. Kobzev, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “AMK-03 automatic weather stations, their modifications and applications,” Datchiki Sistemy, No. 3, p. 42–52 (2012).

  39. V. A. Korolkov, A. Ya. Bogushevich, V. V. Kalchikhin, A. A. Kobzev, S. A. Kurakov, K. N. Pustovalov, A. E. Telminov, A. A. Tikhomirov, and D. V. Petrov, “Experimental prototype of automatic weather station ArcticMeteo,” Proc. SPIE—Int. Soc. Opt. Eng. 11560 (2020). https://doi.org/10.1117/12.2575822

  40. V. A. Korolkov, A. A. Kobzev, A. A. Tikhomirov, A. E. Telminov, K. N. Pustovalov, A. Ya. Bogushevich, V. V. Kalchikhin, and S. A. Kurakov, “Automatic weather station ArcticMeteo. First Field Test Results,” Proc. IOP Conf. Ser.: Earth and Environ. Sci. 611, 012053 (2020).

  41. A. Ya. Bogushevich, ”A software of ultrasonic meteorological stations for investigation of the atmospheric turbulence,” Atmos. Ocean. Opt. 12 (2), 170–174 (1999).

    Google Scholar 

  42. A. Ya. Bogushevich, RF Certificate of Software Registration No. 2002612038 (December 3, 2002).

  43. http://meteosap.ru/services/ispytaniya-izdelij/. Cited June 29, 2021.

  44. J. C. Wyngard and S. F. Zhang, “Tranducer-shadow effects on turbulent spectra measured by sonic anemometers,” J. Atmos. Ocean. Tehnol. 2 (12), 548–558 (1985).

    Article  ADS  Google Scholar 

  45. A. Wieser, F. Fiedler, and U. Corsmeier, “The influence of design on wind measurements with sonic anemometer systems,” J. Atmos. Ocean. Tecno.l 18 (10), 1585–1608 (2001).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Bogushevich.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogushevich, A.Y. Minimization of Systematic Errors of an Ultrasonic Thermometer Due to Signal Time Delays and Temperature Variations in the Design. Atmos Ocean Opt 34, 730–737 (2021). https://doi.org/10.1134/S1024856021060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060051

Keywords:

Navigation