Skip to main content

Ozone Anomaly during Winter–Spring 2019–2020 in the Arctic and over the North of Eurasia Using Satellite (Aura MLS/OMI) Observations


In winter–spring 2019–2020 there was the strongest ozone anomaly in the Arctic in the total history of the observations. It was due to an extraordinarily strong and long-lived polar vortex, entailing unprecedented chemical ozone destruction. Analysis of Aura OMI/MLS data showed that the total ozone content steadily decreased to 230 DU on March 18 at the Alert site, 222 DU on March 18 at Eureka, 229 DU on March 20 at Thule, and 226 DU on March 18 at Resolute. The minimal temperature was 9–10% below normal from December to April in the stratosphere over Tomsk and the Arctic. The ozone concentration decreased to 4% and 6% of the long-term average at an altitude of 20 km on March 27 for Eureka and at an altitude of 19 km on April 16 for Ny-Ålesund. This event is within the context of climate changes, leading to cooling of the stratosphere. Until the level of ozone-depleting substances in the stratosphere of the Arctic is above the values expected from implementation of the Montreal Protocol, there will be a danger that these events will recur in the future. The 2020 vortex was exceptionally isolated, which appreciably mitigated its effect in midlatitudes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. A. I. Jonsson, J. De Grandpre, V. I. Fomichev, J. C. McConnell, and S. R. Beagley, “Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback,” J. Geophys. Res. 109 (D24103) (2004).

  2. J. Pyle, T. G. Shepherd, G. Bodeker, P. Canziani, M. Dameris, P. Forster, A. Gruzdev, R. Muller, N. J. Muthama, G. Pitari, and W. Randel, Ozone and Climate: A Review of Interconnections. Chapter 1. Safeguarding the Ozone Layer and the Global Climate System. IPCC/TEAP Special Report (University Press, Cambridge, 2005).

  3. D. Hu, Z. Guan, W. Tian, and R. Ren, “Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific,” Nat. Com. 9, 1697 (2018).

    ADS  Article  Google Scholar 

  4. I. Wohltmann, P. Gathen, R. Lehmann, M. Maturilli, H. Deckelmann, G. L. Manney, D. Davies, D. Tarasik, N. Jepsen, R. Kivi, N. Lyall, and M. Rex, “Near complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020,” Geophys. Rev. Lett. 47, e2020GL089547 (2020).

  5. J. Kuttippurath, W. Feng, R. Muller, P. Kumar, S. Raj, G. P. Gopikrishnan, and R. Roy, “Arctic on the verge of an ozone hole?,” Atmos. Chem. Phys. Discuss. [Preprint] (2021).

  6. Z. D. Lawrence, J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, E. and R. Nash, “The remarkably strong arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss,” J. Geophys. Res.: Atmos. 125 (22), e2020JD033271 (2020).

  7. M. Dameris, D. G. Loyola, M. Nutzel, M. Coldewey-Egbers, C. Lerot, F. Romahn, and M. van Roozendael, “Record low ozone values over the Arctic in boreal spring 2020,” Atmos. Chem. Phys. 21, 617–633 (2021).

    ADS  Article  Google Scholar 

  8. A. Inness, S. Chabrillat, J. Flemming, V. Huijnen, B. Langenrock, J. Nicolas, I. Polichtchouk, and M. Razinger, “Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis,” J. Geophys. Res. Atmos. 125 (23), e2020JD033563 (2020).

  9. J. Rao and C. I. Garfinkel, “Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases,” J. Geophys. Res.: Atmos. 125 (21), e2020JD033524 (2020).

  10. O. E. Bazhenov, A. A. Nevzorov, A. V. Nevzorov, S. I. Dolgii, and A. P. Makeev, “Disturbance of the stratosphere over Tomsk during winter 2017/2018 using lidar and Aura MLS/OMI observations,” Atmos. Ocean. Opt. 33 (6), 622–628 (2020).

    Article  Google Scholar 

  11. W. Feng, S. Dhomse, C. Arosio, M. Weber, J. P. Burrows, M. L. Santee, and M. P. Chipperfield, “Arctic ozone depletion in 2019/20: Roles of chemistry, dynamics and the Montreal protocol GRL,” Geophys. Rev. Lett. 48 (48), e2020GL091911 (2021).

  12. G. L. Manney, N. J. Livesey, M. L. Santee, L. Froidevaux, A. Lambert, Z. D. Lawrence, L. F. Millan, J. L. Neu, W. G. Read, M. J. Schwartz, and R. A. Fuller, “Record low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters,” Geophys. Rev. Lett. 47, e2020GL089063 (2020).

  13. C. Wilka, S. Solomon, D. Kinnison, and D. Tarasick, “An Arctic ozone hole in 2020 if not for the Montreal protocol,” Atmos. Chem. Phys. Discuss. [Preprint] (2021).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. E. Bazhenov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, O.E. Ozone Anomaly during Winter–Spring 2019–2020 in the Arctic and over the North of Eurasia Using Satellite (Aura MLS/OMI) Observations. Atmos Ocean Opt 34, 643–648 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • total ozone content
  • ozone concentration
  • ozone anomaly
  • Aura satellite