Skip to main content
Log in

High-Resolution Laser Spectroscopy of the Ozone Molecule at the Dissociation Threshold

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

High-sensitivity spectra of the main ozone isotopologue were recorded using a cavity ring-down spectrometer in the region 7920–8670 cm−1, which covers the range up to the dissociation threshold and higher. A sensitivity on the order of 2 × 10−11 cm−1 has been attained, which makes it possible to detect high-energy combination rovibrational bands up to ten vibrational quanta in the electronic ground state. Line positions and intensities are measured for these bands. Hot vibronic bands of the 16O3 isotopologue formed by transitions from the (100) and (020) electronic ground state levels to the excited 3A2 triplet state were recorded for the first time providing new information about the dependence of predissociation broadening on rotational quantum numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Fabian and M. Dameris, Ozone in the Atmosphere: Basic Principles, Natural and Human Impacts (Springer Berlin Heidelberg, Berlin, 2014).

    Book  Google Scholar 

  2. L. Hu, D. J. Jacob, X. Liu, Y. Zhang, L. Zhang, P. S. Kim, M. P. Sulprizio, and R. M. Yantosca, “Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations,” Atmos. Environ. 167, 323–334 (2017).

    Article  ADS  Google Scholar 

  3. D. Krankowsky and K. Mauersberger, “Heavy ozone—a difficult puzzle to solve,” Science 274 (5291), 1324–1325 (1996).

    Article  ADS  Google Scholar 

  4. Gao Yi Qin and R. A. Marcus, “Strange and unconventional isotope effects in ozone formation,” Science 293 (5528), 259–263 (2001).

    Article  ADS  Google Scholar 

  5. R. Schinke, S. Y. Grebenshchikov, M. V. Ivanov, and P. Fleurat-Lessard, “Dynamical studies of the ozone isotope effect: A status report,” Ann. Rev. Phys. Chem. 57 (1), 625–661 (2006).

    Article  ADS  Google Scholar 

  6. D. Charlo and D. C. Clary, “Quantum-mechanical calculations on pressure and temperature dependence of three-body recombination reactions: Application to ozone formation rates,” J. Chem. Phys. 120 (6), 2700–2707 (2004).

    Article  ADS  Google Scholar 

  7. T. Xie and J. M. Bowman, “quantum inelastic scattering study of isotope effects in ozone stabilization dynamics,” Chem. Phys. Lett. 412 (1-3), 131–134 (2005).

    Article  ADS  Google Scholar 

  8. Q. B. Lu, “Correlation between cosmic rays and ozone depletion,” Phys. Rev. Lett. 102 (11), 118501 (2009).

    Article  ADS  Google Scholar 

  9. K. L. Feilberg, A. A. Wiegel, and K. A. Boering, “Probing the unusual isotope effects in ozone formation: Bath gas and pressure dependence of the non-mass-dependent isotope enrichments in ozone,” Chem. Phys. Lett. 556, 1–8 (2013).

    Article  ADS  Google Scholar 

  10. R. A. Marcus, “Theory of mass-independent fractionation of isotopes, phase space accessibility, and a role of isotopic symmetry,” Proc. Natl. Acad. Sci. U.S.A. 110 (44), 17703–17707 (2013).

    Article  ADS  Google Scholar 

  11. B. Ruscic, Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne), Thermochemical Network version 1.110 2010. https://atct.anl.gov/Thermochemical%20Data/version%20Alpha%201.1100/. Cited February 29, 2021.

  12. F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, “Toward an improved ground state potential energy surface of ozone,” J. Phys. Chem. A 114 (36), 9927–9935 (2010).

    Article  Google Scholar 

  13. M. Kaufmann, S. Gil-Lopez, M. Lopez-Puertas, B. Funke, M. Garcia-Comas, N. Glatthor, U. Grabowski, M. Hopfner, G. P. Stiller, T. von Clarmann, M. E. Koukouli, L. Hoffmann, and M. Riese, “Vibrationally excited ozone in the middle atmosphere,” J. Atmos. Sol.-Terr. Phys 68 (2), 202–212 (2006).

    Article  ADS  Google Scholar 

  14. A. G. Feofilov and A. A. Kutepov, “Infrared radiation in the mesosphere and lower thermosphere: Energetic effects and remote sensing,” Surv. Geophys. 33 (6), 1231–1280 (2012).

    Article  ADS  Google Scholar 

  15. S. M. Anderson, F. S. Klein, and F. Kaufman, “Kinetics of the isotope exchange reaction of 18O with NO and O2 at 298 K,” J. Chem. Phys. 83 (4), 1648–1656 (1985).

    Article  ADS  Google Scholar 

  16. C. Janssen, J. Guenther, D. Krankowsky, and K. Mauersberger, “Temperature dependence of ozone rate coefficients and isotopologue fractionation in 16O–18O oxygen mixtures,” Chem. Phys. Lett. 367 (1-2), 34–38 (2003).

    Article  ADS  Google Scholar 

  17. G. Guillon, P. Honvault, R. Kochanov, and V. Tyuterev, “First-principles computed rate constant for the O + O2 isotopic exchange reaction now matches experiment,” J. Phys. Chem. Lett. 9 (8), 1931–1936 (2018).

    Article  Google Scholar 

  18. C. H. Yuen, D. Lapierre, F. Gatti, V. Kokoouline, and V. G. Tyuterev, “The role of ozone vibrational resonances in the isotope exchange reaction 16O16O + 18O → 18O16O + 16O: The time-dependent picture,” J. Phys. Chem. A 123 (36), 7733–7743 (2019).

    Article  Google Scholar 

  19. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, F. Holka, and P. G. Szalay, “New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range,” J. Chem. Phys. 139 (13), 134307 (2013).

    Article  ADS  Google Scholar 

  20. R. Dawes, P. Lolur, A. Li, B. Jiang, and H. Guo, “Communication: An accurate global potential energy surface for the ground electronic state of ozone,” J. Chem. Phys. 139 (20), 201103 (2013).

    Article  ADS  Google Scholar 

  21. V. G. Tyuterev, R. Kochanov, A. Campargue, S. Kassi, D. Mondelain, A. Barbe, E. Starikova, M. R. De Backer, P. G. Szalay, and S. Tashkun, “Does the "reef structure” at the ozone transition state towards the dissociation exist? New insight from calculations and ultrasensitive spectroscopy experiments," Phys. Rev. Lett. 113 (14), 143002 (2014).

    Article  ADS  Google Scholar 

  22. V. G. Tyuterev, A. Barbe, D. Jacquemart, C. Janssen, S. N. Mikhailenko, and E. N. Starikova, “Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 µm ranges,” J. Chem. Phys. 150 (18), 184303 (2019).

    Article  ADS  Google Scholar 

  23. V. G. Tyuterev, R. V. Kochanov, and S. A. Tashkun, “Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands,” J. Chem. Phys. 146 (6), 064304 (2017).

    Article  ADS  Google Scholar 

  24. Vl. G. Tyuterev, A. Barbe, S. N. Mikhailenko, E. S. Starikova, and Yu. L. Babikov, “Towards the intensity consistency of the ozone bands in the infrared range: Ab initio corrections to the S&MPO database,” J. Quant. Spectrosc. Radiat. Transfer (2021).

  25. A. Barbe, S. Mikhailenko, E. Starikova, M. R. De Backer, V. G. Tyuterev, D. Mondelain, S. Kassi, A. Campargue, C. Janssen, S. Tashkun, R. Kochanov, R. Gamache, and J. Orphal, “Ozone spectroscopy in the electronic ground state: High-resolution spectra analyses and update of line parameters since 2003,” J. Quant. Spectrosc. Radiat. Transfer 130, 172–190 (2013).

    Article  ADS  Google Scholar 

  26. E. Starikova, A. Barbe, and V. G. Tyuterev, “The ν3 bands of 17O17O18O and 17O18O17O ozone isotopomers,” J. Quant. Spectrosc. Radiat. Transfer 232, 87–92 (2019).

    Article  ADS  Google Scholar 

  27. E. Starikova, A. Barbe, M. R. De Backer, and V. Tyuterev, “Analysis of thirteen absorption bands of 16O18O18O ozone isotopomer in the 950–3500 cm–1 infrared spectral range,” J. Quant. Spectrosc. Radiat. Transfer. 257, 107364 (2020). https://doi.org/10.1016/j.jqsrt.2020.107364

    Article  Google Scholar 

  28. S. Mikhailenko and A. Barbe, “High resolution infrared spectrum of 16O3: The 3600–4300 cm–1 range reinvestigated,” J. Quant. Spectrosc. Radiat. Transfer 244, 106823 (2020).

    Article  Google Scholar 

  29. Y. L. Babikov, S. N. Mikhailenko, A. Barbe, and V. G. Tyuterev, “S&MPO—an information system for ozone spectroscopy on the WEB,” J. Quant. Spectrosc. Radiat. Transfer 145, 169–196 (2014).

    Article  ADS  Google Scholar 

  30. D. Albert, B. K. Antony, Y. A. Ba, Y. L. Babikov, P. Bollard, V. Boudon, F. Delahaye, G. Del Zanna, M. S. Dimitrijevic, B. J. Drouin, M.-L. Dubernet, F. Duensing, M. Emoto, C. P. Endres, A. Z. Fazliev, J.-M. Glorian, I. E. Gordon, P. Gratier, C. Hill, D. Jevremovic, C. Joblin, D.-H. Kwon, R. V. Kochanov, E. Krishnakumar, G. Leto, P. A. Loboda, A. A. Lukashevskaya, O. M. Lyulin, B. P. Marinkovic, A. Markwick, T. Marquart, N. J. Mason, C. Mendoza, T. J. Millar, N. Moreau, S. V. Morozov, T. Moller, H. S. P. Muller, G. Mulas, I. Murakami, Y. Pakhomov, P. Palmeri, J. Penguen, V. I. Perevalov, N. Piskunov, J. Postler, A. I. Privezentsev, P. Quinet, Y. Ralchenko, Y.-J. Rhee, C. Richard, G. Rixon, L. S. Rothman, E. Roueff, T. Ryabchikova, S. Sahal-Brechot, P. Scheier, P. Schilke, S. Schlemmer, K. W. Smith, B. Schmitt, I. Y. Skobelev, V. A. Sreckovic, E. Stempels, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, C. Vastel, V. Vujcic, V. Wakelam, N. A. Walton, C. Zeippen, and C. M. Zwolf, “A decade with VAMDC: Results and ambitions,” Atoms 8 (4), 76 (2020).

    Article  ADS  Google Scholar 

  31. A. Campargue, S. Kassi, D. Romanini, A. Barbe, M. R. De Backer-Barilly, and V. G. Tyuterev, “CW-cavity ring down spectroscopy of the ozone molecule in the 6625–6830 cm–1 region,” J. Mol. Spectrosc. 240 (1), 1–13 (2006).

    Article  ADS  Google Scholar 

  32. A. Campargue, A. Barbe, M. R. De Backer-Barilly, V. G. Tyuterev, and S. Kassi, “The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm–1: New observations and exhaustive review,” Phys. Chem. Chem. Phys. 10 (20), 2925–2946 (2008).

    Article  Google Scholar 

  33. A. Campargue, S. Kassi, D. Mondelain, A. Barbe, E. Starikova, M. R. De Backer, and V. G. Tyuterev, “Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold,” J. Quant. Spectrosc. Radiat. Transfer 152, 84–93 (2015).

    Article  ADS  Google Scholar 

  34. M. Konefal, S. Kassi, D. Mondelain, and A. Campargue, “High sensitivity spectroscopy of the O2 band at 1.27 µm: (I) Pure O2 line parameters above 7920 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 241, 106653 (2020).

    Article  Google Scholar 

  35. S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5 × 10–13 cm–1 sensitivity,” J. Chem. Phys. 137 (23), 234201 (2012). https://doi.org/10.1063/1.4769974

    Article  ADS  Google Scholar 

  36. M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49 (2), 857–859 (1968). https://doi.org/10.1063/1.1670152

    Article  ADS  Google Scholar 

  37. S. Vasilchenko, D. Mondelain, S. Kassi, and A. Campargue, “Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 µm,” J. Quant. Spectrosc. Radiat. Transfer (2021) (in print).

  38. S. M. Anderson and K. Mauersberger, “Ozone absorption spectroscopy in search of low-lying electronic states,” J. Geophys. Res. 100 (D2), 3033 (1995).

    Article  ADS  Google Scholar 

  39. B. Abel, A. Charvat, and S. F. Deppe, “Lifetimes of the lowest triplet state of ozone by intracavity laser absorption spectroscopy,” Chem. Phys. Lett. 277 (4), 347–355 (1997).

    Article  ADS  Google Scholar 

  40. S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, “New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf Bands,” Phys. Chem. Chem. Phys. 9 (17), 2044–2064 (2007).

    Article  Google Scholar 

  41. A. J. Bouvier, G. Wannous, S. Churassy, R. Bacis, J. Brion, J. Malicet, and R. H. Judge, “Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry,” Spectrochim. Acta A 57 (3), 561–579 (2001).

    Article  ADS  Google Scholar 

  42. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  43. N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, Auwera J. Vander, B. A. Voronin, and A. Makie, “The 2015 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–72 (2016).

    Article  ADS  Google Scholar 

  44. S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics,” Phys. Rev. A: 102 (5), 052804 (2020).

    Article  ADS  Google Scholar 

  45. R. Dawes, P. Lolur, J. Ma, and H. Guo, “Communication: Highly accurate ozone formation potential and implications for kinetics,” J. Chem. Phys. 135 (8), 081102 (2011).

    Article  ADS  Google Scholar 

  46. V. Kokoouline, D. Lapierre, A. Alijah, and V. Tyuterev, “Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold,” Phys. Chem. Chem. Phys. 22 (28), 15885–15899 (2020).

    Article  Google Scholar 

  47. A. Teplukhin and D. Babikov, “A full-dimensional model of ozone forming reaction: The absolute value of the recombination rate coefficient, its pressure and temperature dependencies,” Phys. Chem. Chem. Phys. 18 (28), 19 194–19 206 (2016).

    Article  Google Scholar 

  48. S. Ndengue, R. Dawes, X. G. Wang, T. Carrington, Z. Sun, and H. Guo, “Calculated vibrational states of ozone up to dissociation,” J. Chem. Phys. 144 (7), 74302 (2016).

    Article  Google Scholar 

  49. D. Lapierre, A. Alijah, R. Kochanov, V. Kokoouline, and V. Tyuterev, “Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach,” Phys. Rev. A: 94 (4), 042514 (2016).

    Article  ADS  Google Scholar 

  50. A. Alijah, D. Lapierre, and V. Tyuterev, “Non-adiabatic coupling in the ozone molecule,” Mol. Phys. 116 (19-20), 2660–2670 (2018).

    Article  ADS  Google Scholar 

  51. V. I. Perevalov and V. G. Tyuterev, “Reduction of the centrifugal distortion Hamiltonian of asymmetric top molecules in the case of accidental resonances: Two interacting states. Lower-order terms,” J. Mol. Spectrosc. 96 (1), 56–76 (1982).

    Article  ADS  Google Scholar 

  52. V. I. Starikov, S. A. Tashkun, and V. G. Tyuterev, “Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method. Bending states and second triad of water,” J. Mol. Spectrosc. 151 (1), 130–147 (1992).

    Article  ADS  Google Scholar 

  53. G. Mellau, S. N. Mikhailenko, E. N. Starikova, S. A. Tashkun, H. Over, and V. G. Tyuterev, “Rotational levels of the (000) and (010) states of D2 16O from hot emission spectra in the 320–860 cm–1 region,” J. Mol. Spectrosc. 224 (1), 32–60 (2004).

    Article  ADS  Google Scholar 

  54. S. N. Mikhailenko, V. G. Tyuterev, V. I. Starikov, K. K. Albert, B. P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, R. Lanquetin, J. M. Flaud, and J. W. Brault, “Water spectra in the region 4200–6250 cm–1, extended analysis of ν1 + ν2, ν2 + ν3, and 3ν2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations,” J. Mol. Spectrosc. 213 (2), 91–121 (2002).

    Article  ADS  Google Scholar 

  55. A. Nikitin, J. P. Champion, V. G. Tyuterev, L. R. Brown, G. Mellau, and M. Lock, “The infrared spectrum of CH3D Between 900 and 3200 cm–1: Extended assignment and modeling,” J. Mol. Struct. 517-518, 1–24 (2000).

    Article  ADS  Google Scholar 

  56. A. Nikitin, L. R. Brown, L. Fejard, J. P. Champion, and V. G. Tyuterev, “Analysis of the CH3D nonad from 2000 to 3300 cm–1,” J. Mol. Spectrosc. 216 (2), 225–251 (2002).

    Article  ADS  Google Scholar 

  57. J. K. G. Watson, “Determination of centrifugal distortion coefficients of asymmetric-top molecules,” J. Chem. Phys. 46 (5), 1935–1949 (1967).

    Article  ADS  Google Scholar 

  58. J. M. Flaud and R. Bacis, “The ozone molecule: Infrared and microwave spectroscopy,” Spectrochim. Acta A 54 (1), 3–16 (1998).

    Article  ADS  Google Scholar 

  59. P. Rosmus, P. Palmieri, and R. Schinke, “The asymptotic region of the potential energy surfaces relevant for the O(3P) + O2(X3Sg-) ⇌ O3 reaction,” J. Chem. Phys. 117 (10), 4871–4877 (2002).

    Article  ADS  Google Scholar 

  60. F. Holka, P. G. Szalay, J. Fremont, M. Rey, K. A. Peterson, and V. G. Tyuterev, “Accurate ab initio determination of the adiabatic potential energy function and the Born–Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues,” J. Chem. Phys. 134 (9), 94306 (2011).

    Article  Google Scholar 

  61. A. Tajti, P. G. Szalay, R. Kochanov, and V. G. Tyuterev, “Diagonal Born–Oppenheimer corrections to the ground electronic state potential energy surfaces of ozone: Improvement of ab initio vibrational band centers for the 16O3, 17O3 and 18O3 isotopologues,” Phys. Chem. Chem. Phys. 22 (42), 24 257–24 269 (2020).

    Article  Google Scholar 

  62. O. V. Egorov, F. Mauguiere, and V. G. Tyuterev, “Periodic orbits and bifurcations of the vibrational modes of the ozone molecule at high energies,” Russ. Phys. J. 62 (10), 1917–1925 (2020).

    Article  Google Scholar 

  63. O. V. Egorov and A. K. Tretyakov, “Comparative analysis of the interaction potentials of the ozone molecule with atoms of noble gases: O3–Ar and O3–He complexes,” Russ. Phys. J. 63 (4), 607–615 (2020).

    Article  Google Scholar 

  64. M. Rey, A. V. Nikitin, and V. G. Tyuterev, “First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cm–1,” Phys. Chem. Chem. Phys. 15 (25), 10 049–10 061 (2013).

    Article  Google Scholar 

  65. M. Rey, A. V. Nikitin, and V. G. Tyuterev, “Theoretical hot methane line lists up to T = 2000 K for astrophysical applications,” Astrophys. J. 789 (1), 2 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The LiPhy group is grateful to the LIA SAMIA Russian–French collaboration program.

Funding

This work was financially supported by the Russian Science Foundation (grant no. 19-12-00171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Vasilchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilchenko, S.S., Kassi, S., Mondelain, D. et al. High-Resolution Laser Spectroscopy of the Ozone Molecule at the Dissociation Threshold. Atmos Ocean Opt 34, 373–380 (2021). https://doi.org/10.1134/S1024856021050237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021050237

Keywords:

Navigation