Skip to main content

Absorption Coefficient in the 1–0 CO Band Wing Broadened by Helium

Abstract

Absorption in the 1–0 CO band wing broadened by He at different temperatures is considered within the asymptotic line wing theory, where the absorption coefficient is represented as a sum of the absorption coefficients of individual lines with a special profile at far distances from the line center. The line profile parameters related to the quantum and classical CO–He interaction potentials are found from fitting to experimental data on the absorption in the 1–0 CO band wing and the temperature dependence of the second virial coefficient.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. H. A. Lorentz, “The absorption and emission lines of gaseous bodies,” Proc. KNAW 8 (2), 591–611 (1905–1906).

  2. B. H. Winters, S. Silverman, and W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 m band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4 (4), 527–537 (1964).

    Article  ADS  Google Scholar 

  3. D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59 (3), 267–280 (1969).

    Article  ADS  Google Scholar 

  4. J. Boissoles, C. Boulet, J. M. Hartmann, M. Y. Perrin, and D. Robert, “Collision-induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the ar-broadened wing of CO2 ν3 band,” J. Chem. Phys. 93 (4), 2217–2221 (1990).

    Article  ADS  Google Scholar 

  5. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filippov, “Influence of line interference on the vibration-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (5), 521–543 (1984).

    Article  ADS  Google Scholar 

  6. F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).

    Article  ADS  Google Scholar 

  7. W. M. Elsasser, “Far infrared absorption of atmospheric water vapor,” Astrophys. J. 87, 497–507 (1938).

    Article  ADS  Google Scholar 

  8. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).

    Article  Google Scholar 

  9. K. P. Shine, A. Campargue, D. Mondelain, R. A. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows—current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016). https://doi.org/10.1016/j.jms.2016.04.011

    Article  ADS  Google Scholar 

  10. W. S. Benedict, R. Herman, G. E. Moore, and S. J. Silverman, “Strengths, widths and shapes of lines in the vibration-rotation bands of CO,” Astrophys. J. 135 (1), 277–297 (1962).

    Article  ADS  Google Scholar 

  11. J. F. Lowder, “Self-broadened half-width measurements in the CO fundamental,” J. Quant. Spectrosc. Radiat. Transfer 11 (11), 1647–1657 (1971).

    Article  ADS  Google Scholar 

  12. A. B. Dokuchaev and M. V. Tonkov, “The shape of the inner part of the rovibrational 1–0 CO band,” in Proc. of the VI All-Union Symp. on High- and Superhigh-Resolution Molecular Spectroscopy, Part 2 (IAO TB SB AS USSR, Tomsk, 1982), p. 89–92 [in Russian].

  13. A. B. Dokuchaev and M. V. Tonkov, “The temperature effect on the profile of the rovibrational 1–0 CO band,” in Proc. of the VI All-Union Symp. on High- and Superhigh-Resolution Molecular Spectroscopy, Part 2 (IAO TB SB AS USSR, Tomsk, 1982), p. 93–96 [in Russian].

  14. M. V. Tonkov and N. N. Filippov, “Model of strong collisions in calculations of the forms of rovibrational bands,” Proc. of the VI All-Union Symp. on High- and Superhigh-Resolution Molecular Spectroscopy, Part 2 (IAO TB SB AS USSR, Tomsk, 1982), p. 97–100 [in Russian].

  15. M. V. Tonkov and N. N. Filippov, “Effect of molecular interaction on the form of rovibrational bands in gas spectra. 2. Properties of spectral functions,” Opt. Spektroskop. 54 (5), 801–806 (1983).

    Google Scholar 

  16. A. B. Dokuchaev and M. V. Tonkov, “Non-Lorenzian character of absorption inside the rovibrational 1–0 CO band,” Opt. Spektroskop. 56 (2), 247–254 (1984).

    Google Scholar 

  17. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filippov, “Influence of line interference on the vibration-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (5), 521–543 (1984).

    Article  ADS  Google Scholar 

  18. Yu. I. Baranov and M. V. Tonkov, “CO and CO2 IR band wind shape,” Opt. Spektroskop. 57 (2), 242–247 (1984).

    Google Scholar 

  19. M. V. Tonkov and N. N. Filippov, “Dynamics of the momentum of force in binary collisions and line wing shape of IR CO and CO2 bands,” Khim. Fiz. 10 (7), 922–929 (1991).

    Google Scholar 

  20. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Absorption coefficient in microwindows and wings of the CO fundamental band,” Izv. Vyssh. Ucheb. Zaved. Fiz., No. 211-85 (1985).

  21. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Spectral line shape in CO fundamental vand,” Opt. Atmos. 1 (4), 36–44 (1988).

    Google Scholar 

  22. N. N. Lavrent’eva and G. V. Telegin, “Pogloshchenie v mikrooknakh prozrachnosti osnovnoi polosy spektra SO,” in Proc. of the VII All-Union Symp. on High- and Superhigh-Resolution Molecular Spectroscopy, Part 3 (IAO TB SB AS USSR, Tomsk, 1986), p. 256–260 [in Russian].

  23. O. B. Rodimova, “Absorption coefficient in the CO fundamental band wings,” in Abstr. of the XXII Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2015), p. 36 [in Russian].

  24. C. E. Chuaqui, R.J. Le Roy, and A. R. W. McKellar, “Infrared spectrum and potential energy surface of He–CO,” J. Chem. Phys. 101 (1), 39–61 (1994).

    Article  ADS  Google Scholar 

  25. T. C. Smith, D. A. Hostutler, G. D. Hager, M. C. Heaven, and G. C. McBane, “State-to-state rotational rate constants for CO + He: Infrared double resonance measurements and simulation of the data using the SAPT theoretical potential energy surface,” J. Chem. Phys. 120 (5), 2285–2295 (2004).

    Article  ADS  Google Scholar 

  26. T. G. A. Heijmen, R. Moszynski, P. E. S. Wormer, and Ad Van Der Avoird, “A new He–CO interaction energy surface with vibrational coordinate dependence. I. Ab initio potential and infrared spectrum,” J. Chem. Phys. 107 (23), 9921–9928 (1997).

    Article  ADS  Google Scholar 

  27. K. A. Peterson and G. C. McBane, “A hierarchical family of three-dimensional potential energy surfaces for He–CO,” J. Chem. Phys. 123 (8), 084314–1 (2005).

    Article  ADS  Google Scholar 

  28. J. P. Reid, C. J. S. M. Simpson, and H. M. Quiney, “A new He–CO interaction energy surface with vibrational coordinate dependence. II. The vibrational deactivation of CO (v = 1) by inelastic collisions with 3He and 4He,” J. Chem. Phys. 107 (23), 9929–9934 (1997).

    Article  ADS  Google Scholar 

  29. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  30. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  31. R. Moszynski, T. Korona, P. E. S. Wormer, and Ad van der Avoird, “Ab initio potential energy surface, infrared spectrum, and second virial coefficient of the He–CO Complex,” J. Chem. Phys. 103 (1), 321–332 (1995).

    Article  ADS  Google Scholar 

  32. E. P. Gordov and S. D. Tvorogov, Semiclassical Representation Technique in the Quantum Theory (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Rodimova.

Ethics declarations

The author declare that she has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B. Absorption Coefficient in the 1–0 CO Band Wing Broadened by Helium. Atmos Ocean Opt 34, 390–394 (2021). https://doi.org/10.1134/S1024856021050183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021050183

Keywords:

  • fundamental CO band wing
  • He broadening
  • spectral line wings
  • the second virial coefficient