Skip to main content

Development of an Empirical Model of Optical Characteristics of Aerosol in Western Siberia

Abstract

We present a new development stage of a generalized empirical model of optical characteristics of tropospheric aerosol in Western Siberia. An algorithm is suggested for taking into account the distribution function of absorbing matter and the condensation activity of aerosols as functions of aerosol particle sizes. Optical characteristics have been calculated with the complex refractive index of particles of different sizes variable with the relative air humidity. With aerosol weather types, referred to as “atmospheric haze” type (background and suburban haze), used as an example, the results of retrieving the angular scattering coefficients at small angles and the spectral behavior of the extinction coefficients are compared with experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Atmospheric Aerosol and Its Effect on the Radiation Transfer, Ed. by K.Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

  2. K. Ya. Kondrat’ev and L. S. Ivlev, “Effect of anthropogenic aerosol on the climate,” Dokl. Ros. Akad. Nauk 340 (1), 98–100 (1995).

    Google Scholar 

  3. G.V. Rozenberg, “Light scattering in the Earth’s atmosphere,” Phys.–Uspekhi 3, 346–371 (1960).

    ADS  Article  Google Scholar 

  4. G. V. Rozenberg, G. I. Gorchakov, Yu. S. Georgievskii, and Yu. S. Lyubovtseva, Atmospheric Physics and Climate Problems (Nauka, Moscow, 1980), p. 216–257 [in Russian].

    Google Scholar 

  5. K. Ya. Kondratyev, “Aerosol and climate studies: current state and prospects 1. Aerosol formation, its properties, and their transformations,” Atmos. Ocean. Opt. 19 (1), 1–16 (2006).

    Google Scholar 

  6. K. Ya. Kondratyev, ”From nano- to global scales: Properties, processes of formation, and aftereffects of atmospheric aerosol impacts. 7. Aerosol radiative forcing and climate,” Atmos. Ocean. Opt. 18 (7), 479–496 (2005).

    Google Scholar 

  7. J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. D 102 (6), 6831–6864 (1997).

    ADS  Article  Google Scholar 

  8. K. Bullrich, “Scattering radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).

    ADS  Article  Google Scholar 

  9. B. W. Zhang, “The effect of aerosols to climate change and society,” J. Geosci. Environ. Protect, No. 8, 55–78 (2020).

    Google Scholar 

  10. H. D. Kambezidis, V. E. Cachorro, S. Kinne, K. Krishnamoorthy, G. de Leeuw, and V. Vitale, “Atmospheric aerosols and climate,” Adv. Meteorol. (2010). https://doi.org/10.1155/2010/708782

  11. M. V. Panchenko, M. V. Kabanov, Yu. A. Pkhalagov, B. D. Belan, V. S. Kozlov, S. M. Sakerin, D. M. Kabanov, V. N. Uzhegov, N. N. Shchelkanov, V. V. Pol’kin, S. A. Terpugova, G. N. Tolmachev, E. P. Yausheva, M. Yu. Arshinov, D. V. Simonenkov, V. P. Shmargunov, D. G. Chernov, Yu. S. Turchinovich, Vas. V. Pol’kin, T. B. Zhuravleva, I. M. Nasrtdinov, and P. N. Zenkova, “Integrated studies of tropospheric aerosol at the Institute of Atmospheric Optics (development stages),” Atmos. Ocean. Opt. 33 (1), 27–41 (2020).

    Article  Google Scholar 

  12. G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “Single-parametric model of surface aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 17 (1), 39–49 (1981).

    Google Scholar 

  13. K. Ya. Kondrat’ev and D. V. Pozdnyakov, Aerosol Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  14. G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (Publishing House of TF SB AS USSR, Tomsk, 1986) [in Russian].

    Google Scholar 

  15. N. N. Shchelkanov and Yu. A. Pkhalagov, “Two-parameter model of aerosol attenuation for atmospheric hazes,” Atmos. Ocean. Opt. 12 (12), 1039–1040 (1999).

    Google Scholar 

  16. G. M. Krekov and R. F. Rakhimov, Opto-location Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  17. M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of optical characteristics of the tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  18. G. Hanel, “The properties of atmospheric aerosol particles as function of relative humidity at the thermodynamic equilibrium with surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).

    ADS  Article  Google Scholar 

  19. M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, Vas. V. Pol’kin, S. A. Terpugova, V. N. Uzhegov, D. G. Chernov, V. P. Shmargunov, E. P. Yausheva, and P. N. Zenkova, “Aerosol characteristics in the near-ground layer of the atmosphere of the city of Tomsk in different types of aerosol weather,” Atmosphere 11 (1), 20–39 (2020).

    ADS  Article  Google Scholar 

  20. A. G. Laktionov, Heterogeneous Equilibrium Condensation (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  21. M. V. Panchenko, V. V. Pol’kin, Vas. V. Pol’kin, V. S. Kozlov, E. P. Yausheva, and V. P. Shmargunov, “Size distribution of dry matter of particles in the surface atmospheric layer in the suburban region of Tomsk within the empirical classification of aerosol weather types,” Atmos. Oceanic Opt. 32 (6), 655–662 (2019).

    Article  Google Scholar 

  22. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  23. L. S. Ivlev and S. I. Popova, “Optical constants of atmospheric aerosol matter,” Izv. vuzov. Fiz., No. 5, 91–97 (1972).

  24. E. Mikhailov, S. Vlasenko, S. T. Martin, T. Koop, and U. Poschl, “Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations,” Atmos. Chem. Phys. 9 (24), 9491–9522 (2009).

    ADS  Article  Google Scholar 

  25. D. O. Topping, G. B. McFiggans, and Y. Coe, “A curved multi-component aerosol hygroscopicity model framework: Part 2—Including organic compounds,” Atmos. Chem. Phys., No. 5, 1223–1242 (2005).

  26. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate and the hydrological cycle,” Science 294, 2119–2124 (2001).

    ADS  Article  Google Scholar 

  27. P. Zieger, R. Fierz-Schmidhauser, M. Gysel, J. Strom, S. Henne, K. E. Yttri, U. Baltensperger, and E. Weingartner, “Effects of relative humidity on aerosol light scattering in the Arctic,” Atmos. Chem. Phys. Discuss. 10 (2), 3659–3698 (2010).

    ADS  Google Scholar 

  28. S. T. Martin, “Phase transitions of aqueous atmospheric particles,” Chem. Rev. 100 (6), 3403–3453 (2000).

    Article  Google Scholar 

  29. P. N. Zenkova, S. A. Terpugova, Vas. V. Pol’kin, V. V. Pol’kin, V. S. Kozlov, E. P. Yausheva, and M. V. Panchenko, “Model calculation of the aerosol optical characteristics at different variants of considering hygroscopic and absorbing properties on the example of atmospheric hazes,” Proc. SPIE—Int. Soc. Opt. Eng. (2020). https://doi.org/10.1117/12.2574942

  30. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

    Book  Google Scholar 

  31. V. V. Pol’kin and M. V. Panchenko, “Fitting of the particle size distributions by lognormal functions in the frameworks of empirical classification of the "aerosol weather” Types," Proc. SPIE—Int. Soc. Opt. Eng. (2019). https://doi.org/10.1117/12.2541115

  32. S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov, “Study of simultaneous variations of aerosol extinction on horizontal and slant radiation propagation paths,” Atmos. Ocean. Opt. 15 (4), 285–291 (2002).

    Google Scholar 

  33. Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “On the contributions of disperse fractions of the near ground haze to the extinction of visible and IR radiation,” Atmos. Ocean. Opt. 12 (1), 15–19 (1999).

    Google Scholar 

Download references

Funding

The long-term studies were supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences); and the model for retrieving the set of the optical characteristics taking account of the absorbing and hygroscopic properties of aerosol was developed under the support from the Russian Science Foundation (agreement no. 19-77-20 092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Zenkova or S. A. Terpugova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zenkova, P.N., Terpugova, S.A., Pol’kin, V.V. et al. Development of an Empirical Model of Optical Characteristics of Aerosol in Western Siberia. Atmos Ocean Opt 34, 320–326 (2021). https://doi.org/10.1134/S1024856021040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021040151

Keywords:

  • aerosol
  • empirical model
  • scattering
  • absorption
  • extinction