Skip to main content

Increase in the CuBr Laser Pulse Duration in the Pulse Train Mode

Abstract

Results of experiments on the influence of the excitation mode on the CuBr laser pulse duration are described. One of the distinctive features of the research is the use of train pulses for CuBr molecule dissociation. The effect of the number of pulses in a train and the delay time between the last pulse in a train and an excitation pulse on lasing parameters is studied. It is shown that the variation in the delay time allows one to change the lasing pulse duration by more than three times.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Self-terminating Metal Atom Lasers, Vol. 2, Ed. by V.M. Batenin (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  2. C. E. Little, Metal Vapor Lasers: Physics, Engineering & Application (John Willey&Sons, Chichester, 1998).

    Google Scholar 

  3. Pulsed Metal Vapor Laser. Proc. of NATO Advanced Research Workshop on Pulsed Metal Vapor Lasers—Physics and Emerging Applications in Industry, Medical and Science, Ed. by C.E. Little and N.V. Sabotinov (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  4. A. G. Grigor’yants, M. A. Kazaryan, and N. A. Lyabin, Cu Vapor Lasers: Design, Parameters, and Application (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  5. S. V. Klyuchareva, I. V. Ponomarev, and A. E. Pushkareva, “Therapy of skin vascular malformations using copper vapor laser and pulsed dye laser,” Vestn. Dermatologii Venerologii 94 (1), 65–75 (2018).

    Google Scholar 

  6. M. A. Kazaryan, N. A. Lyabin, and V. M. Zharikov, “Technological systems based on copper vapour laser designed for measurement and material processing,” Proc. SPIE—Int. Soc. Opt. Eng. 4900 (2), 1094–1098 (2002).

  7. M. V. Trigub, V. V. Vlasov, S. N. Torgaev, and G. S. Evtushenko, “An image-brightness amplifier based on copper bromide vapor for operation at increased superradiance pulse duration,” Tech. Phys. Lett. 43 (9), 828–830 (2017). https://doi.org/10.1134/S1063785017090280

    ADS  Article  Google Scholar 

  8. M. V. Trigub, K. V. Fedorov, and G. S. Evtushenko, “Remote object visualization using a laser monitor with a typical pulse duration of CuBr brightness amplifier,” Opt. Atmos. Okeana. 28 (9), 850–853 (2015). https://doi.org/10.15372/AOO20150911

    Article  Google Scholar 

  9. F. A. Gubarev, V. F. Fedorov, K. V. Fedorov, D. V. Shiyanov, and G. S. Evtushenko, “Copper bromide vapour laser with an output pulse duration of up to 320 ns,” Quantum Electron. 46 (1), 57–60 (2016).

    ADS  Article  Google Scholar 

  10. M. A. Kazaryan, N. A. Lyabin, A. N. Soldatov, and N. A. Yudin, “Role of the density of lower laser levels in the control of generation parameters of a copper vapor laser,” J. Rus. Laser Res. 26 (5), 373–379 (2005).

    Article  Google Scholar 

  11. V. A. Dimaki, V. B. Sukhanov, A. G. Filonov, and D. V. Shiyanov, “Sectional CuBr vapor laser with a controlled shape of a generation pulse,” Opt. Atmos. Okeana 25 (5), 460–464 (2012).

    Google Scholar 

  12. Yu. P. Polunin and N. A. Yudin, “Control of the radiation parameters of a copper vapour laser, Quantum Electron. 33 (9), 833–835 (2003).

    ADS  Article  Google Scholar 

  13. M. V. Trigub and V. O. Troitskii, “Continuous control of CuBr-laser with large active volume,” Pis’ma Zhurn. Tekhnich. Fiz. 46 (8), 40–43 (2020).https://doi.org/10.1134/S106378502004029X

  14. E. B. Gordon, V. G. Egorov, and V. S. Pavlenko, “Excitation of metal vapor lasers by pulse trains,” Sov. J. Quantum Electron. 8 (2), 266 (1978).

    ADS  Article  Google Scholar 

  15. V. A. Dimaki, V. B. Sukhanov, V. O. Troitskii, and A. G. Filonov, “Experimental study of train and gate modes of CuBr-laser operation,” Izv. Tom. Politekh. Univ. 314 (4), 111–114 (2009).

    Google Scholar 

  16. S. N. Torgaev, F. A. Gubarev, A. M. Boichenko, G. S. Evtushenko, and O. V. Zhdaneev, “Reduction of copper bromide molecules in the plasma of a CuBr laser during the interpulse period,” Rus. Phys. J. 54 (2), 221–225 (2011).

    Article  Google Scholar 

  17. N. A. Vasnev, M. V. Trigub, V. O. Troitskii, and V. A. Dimaki, “Recovery of steady-state lasing in CuBr laser,” Opt. Atmos. Okeana 30 (3), 259–263 (2017).

    Google Scholar 

  18. A. I. Fedorov and D. V. Shiyanov, “Peculiarities of the obtaining of high efficiency of a CuBr laser with double-pulsed excitation,” Opt. Atmos. Okeana 28 (11), 1035–1040 (2015).

    Google Scholar 

  19. A. M. Boichenko, G. S. Evtushenko, and S. N. Torgaev, “Simulation of a CuBr laser,” Laser Phys. 18 (12), 1522–1525 (2008).

    ADS  Article  Google Scholar 

Download references

Funding

The study of the possibility of increasing the laser pulse duration was supported by the Russian Science Foundation (project no. 19-79-10 096). Design of the thyratron-based excitation system was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Trigub.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trigub, M.V., Dimaki, V.A., Troitskii, V.O. et al. Increase in the CuBr Laser Pulse Duration in the Pulse Train Mode. Atmos Ocean Opt 34, 357–361 (2021). https://doi.org/10.1134/S102485602104014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602104014X

Keywords:

  • pulse duration
  • CuBr laser
  • amplification
  • continuous control