Skip to main content
Log in

Emergent Properties of a Climate System: Derivatives of Annual Average Temperature at Weather Stations of the Northern Hemisphere

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The derivatives of the annual average temperature are analyzed based on data from 927 weather stations of the Northern Hemisphere from 1955 to 2016. Changes in the derivatives are considered as manifestations of the emergent property of the holistic climate system. A measure for these manifestations is introduced. It has a form of a functional which includes averaging of positive and negative derivatives and calculation of their correlation coefficients. It is established that the sampling distribution of sums of opposite extreme values of derivatives of the annual average temperature is symmetric and has a larger kurtosis than a normal distribution. In the period under study, the values of the measure are already close to their limit values. Therefore, annual estimation of changes in the measure of emergent properties in the multichannel monitoring system is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. Prigozhin, Introduction in Thermodynamics of Nonequilibrium Processes (Inostr. literatura, Moscow, 1960) [in Russian].

  2. L. von Bertalanffy, General System Theory—A Critical Review (Society for General Systems Research, 1962).

    Google Scholar 

  3. B. G. Sherstyukov, “Possible resonance mechanism of climate oscillations,” Proc. RIHMI-WDC, Is. 181, 52–70 (2018).

  4. B. G. Sherstyukov, “Resonances in the Solar system and climate variations,” Slozhnye Sistemy, No. 3, 31–48 (2018).

    Google Scholar 

  5. A. V. Byalko, N. I. Vaganova, and E. N. Rumanov, “About possible climate instability, Dokl. Rus. Akad. Nauk 431 (5), 617–620 (2010).

    Google Scholar 

  6. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, United Kingdom; New York, USA, 2013).

    Google Scholar 

  7. Climate Variability and Extremes during the Past 100 Years, Ed. by T. Brönnimann, J. Ewen, J. Luterbacher, H. F. Diaz, R.S. Stolarski, and U. Neu (Springer, Dordrecht, 2008).

    Google Scholar 

  8. C. Simol, M. Brunetti, M. Maugeri, and T. Nanni, “Evolution of extreme temperatures in a warming climate,” Geophys. Res. Lett. 38, L16701 (2011). https://doi.org/10.1029/2011GL048437

    Article  ADS  Google Scholar 

  9. S. Rahmstorf and D. Coumou, “Increase of extreme events in a warming world,” Proc. Natl. Acad. Sci. USA 108 (44), 17 905–17 909 (2011). https://doi.org/10.1073/pnas.1101766108

    Article  Google Scholar 

  10. M. G. Donat, L. V. Alexander, H. Yang, I. Durre, R. Vose, R. J. H. Dunn, K. M. Willett, E. Aguilar, M. Brunet, J. Caesar, B. Hewitson, C. Jack, A. M. G. Klein Tank, A. C. Kruger, J. Marengo, T. C. Peterson, M. Renom, RojasC. Oria, M. Rusticucci, J. Salinger, A. S. Elrayah, S. S. Sekele, A. K. Srivastava, B. Trewin, C. Villarroel, L. A. Vincent, P. Zhai, X. Zhang, and S. Kitching, “Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset,” J. Geophys. Res.: Atmos. 118, 2098–2118 (2013).

    Article  ADS  Google Scholar 

  11. S. M. Papalexiou, A. AghaKouchak, K. E. Trenberth, and E. Foufoula-Georgiou, “Global, regional, and megacity trends in the highest temperature of the year: Diagnostics and evidence for accelerating trends,” Earth’s Future 6, 71–79 (2018).

    Article  ADS  Google Scholar 

  12. B. P. Korol’kov, Thermodynamic Foundations for Self-Organization (IrGUPS, Irkutsk, 2011) [in Tussian].

  13. http://metoffice.gov.uk, http://cru.uea.ac.uk. Cited August 1, 2020.

  14. P. D. Jones, D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, “Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010,” J. Geophys. Res. D 117 (5), D05127 (2012). https://doi.org/10.1029/2011JD017139

    Article  ADS  Google Scholar 

  15. I. Harris, T. J. Osborn, P. Jones, and D. Lister, Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset Sci. Data 7 109. Cited August 1, 2020.https://doi.org/10.1038/s41597-020-0453-3

  16. T. J. Osborn and P. D. Jones, “The CRUTEM4 land-surface air temperature data set: Construction, previous versions, and dissemination via Google Earth,” Sci. Data 6, 61–68 (2014).

    Google Scholar 

  17. M. N. Koshlyakov and R. Yu. Tarakanov, “Water transport across the subantarctic front and the global ocean conveyer belt,” Oceanology 51 (5), 721–735 (2011).

    Article  ADS  Google Scholar 

  18. R. S. Vose, D. Andt, V. F. Banzon, D. R. Easterling, B. Gleason, B. Huang, E. Kearns, J. H. Lawrimore, J. M. Matthew, T. C. Peterson, R. W. Reynolds, T. M. Smith, C. N. Williams, Jr., and D. B. Wuertz, “NOAA’s merged land-ocean surface temperature analysis,” Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

    Article  ADS  Google Scholar 

  19. Yu. P. Perevedentsev and K. M. Shantalinskii, “Measurements of surface air temperature in the Northern hemisphere for 1850–2014,” Uchenye Zapiski Kazanskogo Univ. Ser. Estestvennye Nauki 157 (3), 8–19 (2015).

    Google Scholar 

  20. G. V. Alekseev, “Development and amplification of global warming in the Arctic,” Fund. Prikl. Klimatolog. 1, 11–26 (2015).

    Google Scholar 

  21. J. E. Walsh, “Intensified warming of the Arctic: Causes and impacts on middle latitudes,” Glob. Plan. Change 117, 52–63 (2014).

    Article  ADS  Google Scholar 

  22. H. W. Dove, Die Verbreitung der Warme auf der oberflache der Erde: Erlautert durch Isotermen, thermische Isanomalen und Temperaturcurven (Verlag for Dietrich Reimer, Berlin 1852).

    Google Scholar 

  23. J.-Sh. Ye, Y. H. Gong, F. Zhang, J. Ren, X.-K. Bai, and Y. Zheng, “Which temperature and precipitation extremes best explain the variation of warm versus cold years and wet versus dry years?,” J. Clim. 31, 45–59 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tartakovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartakovsky, V.A., Cheredko, N.N. & Maksimov, V.G. Emergent Properties of a Climate System: Derivatives of Annual Average Temperature at Weather Stations of the Northern Hemisphere. Atmos Ocean Opt 34, 341–346 (2021). https://doi.org/10.1134/S1024856021040138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021040138

Keywords:

Navigation