Skip to main content
Log in

Nonpolynomial Representation of N2-, O2-, Air-, and Self-Broadening Coefficients of Ozone Lines

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


Parameters of a nonpolynomial analytical model γ(sur) are determined from the fitting of known experimental data on the N2-, O2-, air-, and self-broadening coefficients of the ozone absorption lines. The model gives a finite value for the coefficients γ in asymptotics. The average accuracy of experimental data description is better than 3% for several thousand lines with quantum numbers up to J = 60. The results of calculations in the model suggested are compared to the results obtained with polynomial representations of the broadening coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others


  1. S. N. Mikhailenko, “Studies of IR absorption ozone spectra between 2000 and 2015,” Optika Atmos. Okeana 28 (7), 587–607 (2015).

    Google Scholar 

  2. M. A. H. Smith, C. P. Rinsland, and V. M. Devi, “Measurements of self-broadening of infrared absorption lines of ozone,” J. Mol. Spectrosc. 147 (1), 142–154 (1991).

    Article  ADS  Google Scholar 

  3. G. Wagner, M. Birk, F. Schreier, and J.-M. Flaud, “Spectroscopic database for ozone in the fundamental spectral regions,” J. Geophys. Res. 107 (D22), 4626 (2002).

    Article  Google Scholar 

  4. J. Buldyreva, N. N. Lavrent’eva, and V. I. Starikov, Collisional Line Broadening and Shifting of Atmosphyric Gase. A Practical Guide for Line Shape Modeling by Current Semi-Classical Approaches (Imperial College Press, London, 2010).

    Book  Google Scholar 

  5. V. I. Starikov, “Analytical representation for the coefficients of pressure broadening of the ozone absorption lines by oxygen, air, and self-broadening,” Atmos. Ocean. Opt. 19 (8), 636–640 (2006).

    Google Scholar 

  6. V. I. Starikov, “Calculation and analytical representation of self-pressure and air pressure broadening coefficients of ozone spectral lines,” Opt. Spectroscop. 110 (3), 340–350 (2011).

    Article  ADS  Google Scholar 

  7. C. Claveau, “Temperature dependence of nitrogen and oxygen-broadening of the 16O3 ν1 band,” Mol. Phys. 109 (12), 1599–1606 (2011).

    Article  ADS  Google Scholar 

  8. R. W. Larsen, F. M. Nicolaisen, and G. O. Sorensen, “Determination of self-, air-, and oxygen-broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependencies,” J. Mol. Spectrosc. 210 (2), 259–270 (2001).

    Article  ADS  Google Scholar 

  9. D. Priem, J. M. Colmont, F. Rohart, G. Wlodarczak, and R. R. Gamache, “Relaxation and lineshape of the 500.4-GHz line of ozone perturbed by N2 and O2,” J. Mol. Spectrosc. 204 (2), 204–215 (2000).

    Article  ADS  Google Scholar 

  10. F. Rohart, G. Wlodarczak, J. M. Colmont, G. Cazzoli, L. Dore, and C. Puzzarini, “Galatry versus speed-dependent Voigt profiles for millimeter lines of O3 in collision with N2 and O2,” J. Mol. Spectrosc. 251 (1-2), 282–292 (2008).

    Article  ADS  Google Scholar 

  11. J. M. Colmont, B. Bakri, F. Rohart, G. Wlodarczak, J. Demaison, G. Cazzoli, L. Dore, and C. Puzzarini, “Intercomparison between ozone-broadening parameters retrieved from millimetre-wave measurements by using different techniques,” J. Mol. Spectrosc. 231 (2), 171–187 (2005).

    Article  ADS  Google Scholar 

  12. M. M. Yamada and T. Amano, “pressure broadening measurement of submillimeter-wave lines of O3,” J. Quant. Spectrosc. Radiat. Transfer 95 (2), 221–230 (2005).

    Article  ADS  Google Scholar 

  13. J. S. Margolis, “N2 broadening parameters of ozone at 9.6 μm,” J. Quant. Spectrosc. Radiat. Transfer 29 (6), 539–542 (1983).

    Article  ADS  Google Scholar 

  14. J. M. Hoell, C. N. Harward, C. H. Bair, and B. S. Williams, “Ozone air broadening coefficients in the 9 μm region,” Proc. SPIE—Int. Soc. Opt. Eng. (1981).

  15. S. Bouazza, A. Barbe, J. J. Plateaux, L. Rosenmann, J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, and R. R. Gamache, “Measurements and calculations of room-temperature ozone line-broadening by N2 and O2 in the ν1 + ν3 band,” J. Mol. Spectrosc. 157 (2), 271–289 (1993).

    Article  ADS  Google Scholar 

  16. A. Barbe, L. Regalia, J. J. Plateaux, P. Heyden, and X. Tomas, “Temperature dependence of N2 and O2 broadening coefficients of ozone,” J. Mol. Spectrosc. 180 (1), 175–182 (1996).

    Article  ADS  Google Scholar 

  17. B. J. Drouin and R. R. Gamache, “Temperature dependent air-broadened linewidths of ozone rotational transitions,” J. Mol. Spectrosc. 251 (1-2), 194–202 (2008).

    Article  ADS  Google Scholar 

  18. B. J. Drouin, J. Fischer, and R. R. Gamache, “Temperature dependent pressure induced lineshape of O3 rotational transitions in air,” J. Quant. Spectrosc. Radiat. Transfer 83 (1), 63–81 (2004).

    Article  ADS  Google Scholar 

  19. V. M. Devi, D. C. Benner, M. A. H. Smith, and C. P. Rinsland, “Air-broadening and shift coefficients of O3 lines in the ν2 band and their temperature dependence,” J. Mol. Spectrosc. 182 (2), 221–238 (1997).

    Article  ADS  Google Scholar 

  20. M. A. H. Smith, V. M. Devi, D. C. Benner, and C. P. Rinsland, “Temperature dependence of air-broadening and shift coefficients of O3 lines in the ν1 band,” J. Mol. Spectrosc. 182 (2), 239–259 (1997).

    Article  ADS  Google Scholar 

  21. C. Meunier, P. Marche, and A. Barbe, “Intensities and air broadening coefficients of O3 in the 5- and 3-μm regions,” J. Mol. Spectrosc. 95 (2), 271–275 (1982).

    Article  ADS  Google Scholar 

  22. R. Lynch, R. R. Gamache, and S. P. Neshyba, “Fully complex implementation of the Robert–Bonamy formalism: Half widths and line shifts of H2O broadened by N2,” J. Chem. Phys. 105 (14), 5711–5721 (1996).

    Article  ADS  Google Scholar 

  23. M. Guinet, D. Mondelain, C. Janssen, and C. Camy-Peyret, “Laser spectroscopic study of ozone in the 100 ← 000 band for the SWIFT instrument,” J. Quant. Spectrosc. Radiat. Transfer 111 (7–8), 961–972 (2010).

    Article  ADS  Google Scholar 

Download references


The work of S.N. Mikhailenko was supported by the Russian Ministry of Science and Higher Education (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to V. I. Starikov or S. N. Mikhailenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikov, V.I., Mikhailenko, S.N. Nonpolynomial Representation of N2-, O2-, Air-, and Self-Broadening Coefficients of Ozone Lines. Atmos Ocean Opt 34, 293–301 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: