Skip to main content

Absorption Coefficient and Intermolecular Vibrations in the СО–Ar System


Absorption in the 1–0 band of CO broadened by Ar is examined using the asymptotic line-wing theory (ALWT). A semiclassical expression is derived for the line shape, where the motion of the centers of mass is considered classical and other variables remain quantum. The line shape parameters are fitted to reach agreement between calculated and experimental data on the absorption in the CO band wing. The classical potential parameters are found from the temperature dependence of the second virial coefficient. A qualitative agreement is found between the quantum potential parameters and intermolecular potential surfaces from quantum-chemical calculations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  2. S. D. Tvorogov and O. B. Rodimova, Collisional Profile of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

  3. E. P. Gordov and S. D. Tvorogov, Semi-classical Representation Method in Quantum Theory (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  4. A. De Piante, E. J. Campbell, and S. J. Buelow, “Pulsed molecular-beam, diode-laser spectrometry using rapid scanning techniques,” Rev. Sci. Instrum. 60 (5) 858–862 (1989).

    ADS  Article  Google Scholar 

  5. T. Ogata, W. Jager, I. Ozier, and M. C. L. Gerry, “The microwave rotational spectrum of the Ar–CO dimer,” J. Chem. Phys. 98 (12), 9399–9404 (1993).

    ADS  Article  Google Scholar 

  6. M. Hepp, W. Jager, I. Pak, and G. Winnewisser, “Absorption measurements of Ar–CO b-type rotational transitions with a supersonic jet millimeter-wave spectrometer,” J. Mol. Spectrosc. 176, 58–63 (1996).

    ADS  Article  Google Scholar 

  7. M. Hepp, R. Gendriesch, I. Pak, Y. A. Kuritsyn, F. Lewen, G. Winnewisser, M. Brookes, A. R. W. McKellar, J. K. G. Watson, and T. Amano, “Millimetre-wave spectrum of the Ar–CO complex: The K = 2 ← 1 and 3 ← 2 subbands,” Mol. Phys. 92 (2), 229–236 (1997).

    ADS  Google Scholar 

  8. F. A. Gianturco, F. Paesani, M. F. Laranjieira, V. Vassilenko, and M. A. Cunha, “Intermolecular forces from density functional theory. III. A multiproperty analysis for the Ar(1S)–CO() interaction,” J. Chem. Phys. 110 (16), 7832–7845 (1999).

    ADS  Article  Google Scholar 

  9. D. G. Melnik, S. Gopalakrishnan, T. A. Miller, F. C. D. Lucia, and S. Belov, “Submillimeter wave vibration-rotation spectroscopy of Ar–CO and Ar–ND3,” J. Chem. Phys. 114 (14), 6100–6106 (2001).

    ADS  Article  Google Scholar 

  10. M. Havenith, G. Hilpert, M. Petri, and W. Urban, “Measurement of the first excited bending state of Ar‒CO using a new concentration modulation technique in the jet,” Mol. Phys. 81 (4), 1003–1010 (1994).

    ADS  Article  Google Scholar 

  11. K. Mirsky, “Carbon monoxide molecules in an argon matrix: Empirical Evaluation of the Ar…Ar, C…Ar and O…Ar potential parameters,” Chem. Phys. 46, 445–455 (1980).

    Article  Google Scholar 

  12. J. Tennyson, S. Miller, and B. T. Sutcliffe, “Beyond ro-vibrational separation,” J. Chem. Soc., Faraday Trans. II. 84 (9), 1295–1303 (1988).

    Article  Google Scholar 

  13. B. Kukawska-Tarnawska, G. ChaIasinski, and K. Olszewski, “Structure and energetics of van der Waals complexes of carbon monoxide with rare gases. He-CO and Ar-CO,” J. Chem. Phys. 101 (6), 4964–4974 (1994).

    ADS  Article  Google Scholar 

  14. G. Jansen, “Coupled-pair functional calculations on the Ar–CO and Ar2 van der Waals complexes,” Chem. Phys. Lett. 223, 377–382 (1994).

    ADS  Article  Google Scholar 

  15. S. Shin, S. K. Shin, and F.-M. Tao, “Ab initio potential energy surface and rovibrational energies of Ar–CO,” J. Chem. Phys. 104 (1), 183–190 (1996).

    ADS  Article  Google Scholar 

  16. F. A. Gianturco and F. Paesani, “The rovibrational structure of the Ar–CO complex from a model interaction potential,” J. Chem. Phys. 115 (1), 249–256 (2001).

    ADS  Article  Google Scholar 

  17. T. B. Pedersen, J. L. Cacheiro, B. Fernandez, and H. Koch, “Rovibrational structure of the Ar–CO complex based on a novel three-dimensional ab initio potential,” J. Chem. Phys. 117 (14), 6562–6572 (2002).

    ADS  Article  Google Scholar 

  18. Y. Sumiyoshi and Y. Endo, “Three-dimensional potential energy surface of Ar–CO,” J. Chem. Phys. 142 (2), 024314-1–11 (2015).

    ADS  Article  Google Scholar 

  19. A. B. Dokuchaev and M. V. Tonkov, “Non-Lorentz absorption inside the CO2 1–0 rovibrational band,” Opt. Spektroskop. 56 (2), 247–254 (1984).

    Google Scholar 

  20. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filippov, “Influence of line interference on the vibration-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (5), 521–543 (1984).

    ADS  Article  Google Scholar 

  21. Yu. I. Baranov and M. V. Tonkov, “Wind shapes of SO and SO2 IR bands,” Opt. Spektroskop. 57 (2), 242–247 (1984).

    Google Scholar 

  22. M. V. Tonkov and N. N. Filippov, “Dynamics of moment during binary collisions and wind shapes of SO and SO2 IR bands,” Khimich. Fiz. 10 (7), 922–929 (1991).

    Google Scholar 

  23. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Absorption Coefficients in Microwindows and Wings of the SO Fundamental Band, Available from VINITI, 1985, no. 211-85.

  24. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Spectral line shape in CO fundamental band,” Opt. Atmos. 1 (4), 36–44 (1988).

    Google Scholar 

  25. O. B. Rodimova, “Absorption coefficient in the wing of 1–0 CO band broadened by He,” Opt. Atmos. Okeana 33 (9), 663–667 (2020).

    Google Scholar 

  26. J. Brewer, AFOSR Report 67-2795 (Dec 1967), Available from the Clearinghouse for Federal Scientific and Technical Information, Doc. AD 663448.

  27. J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures: A Critical Complication (Clarendon, Oxford, 1980).

    Google Scholar 

  28. S. D. Tvorogov and O. B. Rodimova, “Asymptotic and quasistatic approaches in spectral line shape theory,” Opt. Atmos. Okeana 25 (1), 31–45 (2012).

    Google Scholar 

Download references


The study was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. B. Rodimova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B. Absorption Coefficient and Intermolecular Vibrations in the СО–Ar System. Atmos Ocean Opt 34, 288–292 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • fundamental CO band wing
  • He broadening
  • spectral line wings
  • second virial coefficient
  • potential energy surface