Skip to main content

Granulometric Composition of Settled Aerosol Material and Ratio of Phenolic Compounds in Different-Age Needles


We present the results from laser granulometry of a nanosized fraction of aerosol substance and from UV spectrometry of water washouts from different-age needles in four plant species. It is estimated how the hydrothermal conditions influence the time variations in morphometric indices of needles and contamination of their surfaces by phenolic compounds in the composition of secondary organic aerosols. We discuss how secondary organic aerosols are generated on the surfaces of different-age needles during efflorescence of phenolic compounds and their subsequent entry into the forest canopy during turbulent separation of the boundary layer from the leaf surface.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. N. V. Lukina, T. A. Sukhareva, and L. G. Isaeva, Technogenic Digression and Secondary Succession in Northern Boreal Forest (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  2. S. S. Mel’khotra and A. A. Khan, “Biochemical and physiological effects of predominant pollutants,” in Air Pollution and Plant Life (Gidrometeoizdat, Leningrad, 1988), p. 144–161 [in Russian].

    Google Scholar 

  3. V. D. Nadutkin and A. N. Modyanov, “Aerial biomass of woody plants in moss pine forest,” Voprosy Ekologii Sosnyakov Severa, Iss. 24, 70–80 (1972).

    Google Scholar 

  4. B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley and Sons, 1976).

    Google Scholar 

  5. A. Blazhei and L. Shutyi, Vegetable-Origin Phenol Compounds (Mir, Moscow, 1977) [in Russian].

  6. M. J. Giertych, P. Karolewski, and L. O. De Temmerman, “Foliage age and pollution alter content of phenolic compounds and chemical elements in pinus nigra needles,” Water Air Soil Pollut. 110, 363–377 (1999).

    Article  ADS  Google Scholar 

  7. C. Robles, S. Greff, V. Pasqualini, S. Gazino, A. B. Melou, C. Fernandez, N. Korboulewsky, and G. Bonin, “Phenols and flavonoids in aleppo pine needles as bioindicators of air pollution,” J. Environ. Qual. 32 (6), 2265–2271 (2003).

    Article  Google Scholar 

  8. J. Klyta and M. Czaplicka, “Determination of secondary organic aerosol in particulate matter—short review,” Microchem. J. 157 (2020).

  9. M. Ehn, J. A. Thornton, E. Kleist, M. Sipila, H. Junninen, I. Pillinen, M. Spriger, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I. H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurten, L. B. Nielsen, S. Jorgensen, H. G. Kjaergaard, M. Canagaratna, MasoM. Dal, T. Berndt, T. Petaja, A. Wahner, V. M. Kerminen, M. Kulmala, D. R. Worsnop, J. Wildt, and T. F. Mentel, “A large source of low-volatility secondary organic aerosol,” Nature 506, 476–479 (2014).

    Article  ADS  Google Scholar 

  10. M. Turunena, W. Hellerb, S. Strichb, H. Sandermannb, M.-L. Sutinenec, and Y. Norokorpic, “The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic,” Environ. Pollut. 106 (2), 219–228 (1999).

    Article  Google Scholar 

  11. J. P. Wong, M. Tsagkaraki, I. Tsiodra, N. Mihalopoulos, K. Violaki, M. Kanakidou, J. Sciare, A. Nenes, and R. J. Weber, “Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning,” Atmos. Phys. 19 (11), 7319–7334 (2019).

    Article  ADS  Google Scholar 

  12. A. Singer, W. F. A. Kirsten, and C. Buhmann, “A proposed fog deposition mechanism for the formation of salt efflorescences in the Mpumalanga Highveld, Republic of South Africa,” Water Air Soil Pollut. 109, 313–325 (1999).

    Article  ADS  Google Scholar 

  13. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Wind effect on aerosol transport from the underlying surface,” Izv., Atmos. Ocean. Phys. 40 (6), 679–694 (2004).

    Google Scholar 

  14. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Arid submicron aerosol transport by vortices,” Izv., Atmos. Ocean. Phys. 39 (5), 536–547 (2003).

    Google Scholar 

  15. E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Air dynamics near the soil surface and convective emission of aerosol,” Izv., Atmos. Ocean. Phys. 46 (1), 29–40 (2010).

    Article  Google Scholar 

  16. I. B. Ivanov and D. N. Platikanov, Colloids (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  17. L. G. Lojtsyanskij, Fluid and Gas Mechanics (Moscow, 1970) [in Russian].

    Google Scholar 

  18. P. Chzhen, Detachable Flows (Mir, Moscow, 1972), vol. 1 [in Russian].

  19. S. P. Hromov, Meteorology and Climatology (Gidrometeoizdat, Leningrad, 1968) [in Russian].

    Google Scholar 

  20. V. A. Alekseev, Light Conditions in Forest (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

Download references


The work was performed based on the infrastructure of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, including the Center for Collective Use Atmosfera, created and operated within State Order, and with the use of instrumentation in Center for Collective Use Khimiya of the Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of Sciences.


This work was supported by Russian Foundation for Basic Research (grant no. 19-05-50 024).

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. P. Tentukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tentukov, M.P., Mikhailov, V.I., Timushev, D.A. et al. Granulometric Composition of Settled Aerosol Material and Ratio of Phenolic Compounds in Different-Age Needles. Atmos Ocean Opt 34, 222–228 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: