Skip to main content
Log in

Detection of Oil Pollution in the Form of Emulsion and Individual Films on the Water Surface of the Bering Sea Using Hyperspectral Visible Radiometry in August 2013

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The spectra of sea reflectance coefficients, measured remotely from a ship in the region of the Urals oil spill, in the form of emulsion and individual films, have been analyzed. The pollution was detected in the Bering Sea near Cape Navarin on August 4, 2013, during the voyage of the Professor Khlyustin training ship. In situ flow-through fluorometric measurements of concentrations of the chlorophyll a and colored dissolved organic matter at a depth of 4 m, where the contamination effect was not detected, were used. The regression relations between remote and in situ measurements in clear and oil-polluted waters are analyzed. The preliminary technique is developed for detecting sea surface oil pollution, which is in emulsified form and in the form of small films about 1 m2 in area, using remote measurements of the seawater reflectance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Liu, C. Zhao, X. Li, M. He, and W. Pichel, “Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm,” Int. J. Remote Sens. 31 (17-18), 4819–4833 (2010). https://doi.org/10.1080/01431161.2010.48514

    Article  ADS  Google Scholar 

  2. https://earth.esa.int/documents/10174/1598482/GEN49. pdf. Cited October 5, 2020.

  3. A. Galierikova and M. Materna, “World seaborne trade with oil: One of main cause for oil spills?,” Transport. Res. Procedia 44, 297–304 (2020).

    Article  Google Scholar 

  4. A. R. Prabowo and D. M. Bae, “Environmental risk of maritime territory subjected to accidental phenomena: Correlation of oil spill and ship grounding in the Exxon Valdez’s case,” Results Eng. 4, 100035 (2019).

    Article  Google Scholar 

  5. National Research Council 2003. Oil in the Sea III: Inputs, Fates, and Effects (The National Academies Press, Washington, DC, 2003).

  6. Aerospace Monitoring of Oil-Gas Complex Objects (Nauchnyi mir, Moscow, 2012) [in Russian].

  7. C. Brekke and A. H. S. Solberg, “Oil spill detection by satellite remote sensing,” Remote Sens. Environ. 95 (2005).

  8. V. Chaudhary and S. Kumar, “Marine oil slicks detection using spaceborne and airborne SAR data,” Adv. Space Res. 66 (1), 1–13 (2020). https://doi.org/10.1016/j.rse.2004.11.015

    Article  ADS  Google Scholar 

  9. Remote Sensing of Ocean Colour in Coastal and Other Optically-Complex Waters, Ed. by S. Sathyendranath (IOCCG, Dartmouth, 2000). https://doi.org/10.25607/OBP-95

    Book  Google Scholar 

  10. https://mdacorporation.com/docs/default-source/product-spec-sheets/geospatial-services/radarsat-1-pricing-information.pdf. Cited September 10, 2020.

  11. www.bonnagreement.org/publications. Cited September 10, 2020.

  12. I. Leifer, B. Luyendyk, and K. Broderick, “Tracking an oil slick from multiple natural sources, Coal Oil Point, California,” Marine Petrol. Geology 23 (5), 621–630 (2006). https://doi.org/10.1016/j.marpetgeo.2006.05.001

    Article  Google Scholar 

  13. P. A. Salyuk, I. M. Doroshenkov, O. A. Bukin, E. B. Sokolova, and E. N. Baulo, “Change of seawater fluorescence properties when mixing with crude oil,” Atmos. Ocean. Opt. 27 (5), 438–443 (2014). https://doi.org/10.1134/S102485601405011X

    Article  Google Scholar 

  14. V. Byfield and S. Boxall, “Thickness estimates and classification of surface oil using passive sensing at visible and near-infrared wavelengths,” IEEE, 1475–1477 (1999). doi. 1999.771992https://doi.org/10.1109/IGARSS

  15. Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories,” Mar. Geod. 36 (3), 334–346 (2013).

    Article  Google Scholar 

  16. M. F. Quinn, A. S. Al-Otaibi, P. S. Sethi, F. Al-Bahrani, and O. Alameddine, “Measurement and analysis procedures for remote identification of oil spills using a laser fluorosensor,” Int. J. Remote Sens. 15 (13), 2637–2658 (1994).

    Article  ADS  Google Scholar 

  17. J. L. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter, and K. Voss, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. V. III: Radiometric Measurements and Data Analysis Protocols (National Aeronautical and Space Administration, Greenbelt, 2003).

  18. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38 (36), 7442 (1999).

    Article  ADS  Google Scholar 

  19. L. Massi, F. Maselli, C. Rossano, S. Gambineri, E. Chatzinikolaou, T. Dailianis, C. Arvanitidis, C. Nuccio, F. Scapini, and L. Lazzara, “Reflectance spectra classification for the rapid assessment of water ecological quality in Mediterranean ports,” Oceanologia 61 (4), 445–459 (2019).

    Article  Google Scholar 

  20. V. Y. Osadchy, K. S. Shifrin, I. Y. Gurevich, and J. S. Jaffe, “Remote sensing and measurement of the thickness of oil films on the sea surface using reflectivity contrast,” Proc. SPIE—Int. Soc. Opt. Eng., 747–758 (1994).

  21. L. Palombi, G. Cecchi, D. Guzzi, D. Lognoli, V. Nardino, I. Pippi, and V. Raimondi, “Passive remote sensing of solar-induced fluorescence spectra of crude oil,” Int. J. Remote Sens. 33 (21), 6695–6709 (2012). https://doi.org/10.1117/12.190121

    Article  ADS  Google Scholar 

  22. www.researchgate.net/profile/Valborg_Byfield/publication/35478105_Optical_remote_sensing_of_oil_in_ the_marine_environment/links/0c9605358c5d8e498a 000000.pdf. Cited September 10, 2020.

  23. A. A. Molkov, I. A. Kapustin, A. V. Ermoshkin, and S. A. Ermakov, “Remote sensing methods for measuring the thickness of oil/oil product films on the sea surface,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 17 (3), 9–27 (2020). https://doi.org/10.21046/2070-7401-2020-17-3-9-27

    Article  Google Scholar 

  24. P. A. Salyuk, I. E. Stepochkin, I. A. Golik, O. A. Bukin, A. N. Pavlov, and A. I. Aleksanin, “Development of empirical algorithms for chlorophyll a and colored dissolved organic matter concentrations estimation from water remote sensed data in the Far Eastern seas,” Issledovaniya Zemli Kosmosa, No. 3, 45–57 (2013). https://doi.org/10.7868/S0205961413030044

    Article  Google Scholar 

  25. P. A. Salyuk, I. E. Stepochkin, O. A. Bukin, E. B. Sokolova, A. Y. Mayor, J. V. Shambarova, and A. R. Gorbushkin, “Determination of the chlorophyll a concentration by MODIS-Aqua and VIIRS satellite radiometers in Eastern Arctic and Bering Sea,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 52 (9), 988–998 (2016).

    Google Scholar 

  26. J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geosc. Remote Sens. 1 (2), 6–36 (2013).

    Article  Google Scholar 

  27. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: The black pixel assumption,” Appl. Opt. 39 (21), 3582 (2000).

    Article  ADS  Google Scholar 

  28. J. E. O’Reilly and P. J. Werdell, “Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6,” Remote Sens. Environ. 229, 32–47 (2019).

    Article  ADS  Google Scholar 

  29. I. Leifer, W. J. Lehr, D. Simecek-Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

The work was made within the State Budget theme no. AAAA-A19-119122090009-2 and under the partial financial support of the Russian Foundation for Basic Research (project no. 18-32-20146 mol_a_ved).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Stepochkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepochkin, I.E., Salyuk, P.A. & Kachur, V.A. Detection of Oil Pollution in the Form of Emulsion and Individual Films on the Water Surface of the Bering Sea Using Hyperspectral Visible Radiometry in August 2013. Atmos Ocean Opt 34, 267–273 (2021). https://doi.org/10.1134/S1024856021030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021030155

Keywords:

Navigation