Abstract—
The H2O foreign-continuum absorption in the IR region is considered within the asymptotic line wing theory, where absorption is represented as the sum of the absorption coefficients of individual lines of a special profile at far distances from the line centers. The line profile parameters pertaining to quantum and classical Н2О–N2 interaction potentials are found from fitting the experimental data on absorption in the 4200–5000 cm−1 spectral range and on the temperature dependence of the second virial coefficient. This line profile is used for calculation of the continuum absorption in the 1000–10 000 cm−1 range.
This is a preview of subscription content, access via your institution.








REFERENCES
I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).
K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33 (3-4), 535–555 (2012).
J.-M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, “Recent advances in collisional effects on spectra of molecular gases and their practical consequences,” J. Quant. Spectrosc. Radiat. Transfer 213, 178–227 (2018).
K. P. Shine, A. Campargue, D. Mondelain, R. A. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows—current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016).
L. Lechevallier, S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini, and A. Campargue, “The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 µm,” Atmos. Meas. Tech. 11, 2159–2171 (2018).
I. Ptashnik, T. E. Klimeshina, A. A. Solodov, and A. A. Vigasin, “Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 µm bands,” J. Quant. Spectrosc. Radiat. Transfer 228, 97–05 (2019).
T. Odintsova, M. Yu. Tretyakov, A. O. Zibarova, O. Pirali, P. Roy, and A. Campargue, “Far-infrared self-continuum absorption of H2 16O and H2 18O (15–500 cm–1),” J. Quant. Spectrosc. Radiat. Transfer 227, 1900–1909 (2019).
I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–25 (2013).
T. E. Klimeshina and O. B. Rodimova, “Calculation of H2O continuum absorption in IR-region based on Burch’s measurements,” Opt. Atmos. Okeana 32 (8), 628–632 (2019).
D. E. Burch and D. A. Gryvnak, “Continuum absorption by H2O vapor in the infrared and millimeter regions,” in Atmospheric Water Vapor, Ed. by A. Deepak, T.D. Wilkerson, and L.H. Ruhnke (Academic Press, New York; London; Toronto; Sydney; San Francisco, 1980).
D. E. Burch, “Continuum absorption by atmospheric H2O,” Proc. SPIE—Int. Soc. Opt. Eng. 277, 28–39 (1981).
D. E. Burch and R. L. Alt, Continuum Absorption by H 2 O in the 700–1200 cm –1 and 2400–2800 cm –1 Windows. Report AFGL-TR-84-0128 (1984).
S. Vasilchenko, A. Campargue, S. Kassi, and D. Mondelain, “The water vapour self- and foreign-continua in the 1.6 mm and 2.3 mm windows by CRDS at room temperature,” J. Geophys. Res.: Atmos. 227, 230–238 (2019).
D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, “The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm,” Phys. Chem. Chem. Phys. 17, 17762–17770 (2015).
D. E. Burch, Absorption by H2O in Narrow Windows between 3000–4200 cm –1 . Report AFGL-TR-85-0036 (1985).
Y. I. Baranov, “The continuum absorption in H2O + N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2281–2286 (2011).
I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements,” Philos. Trans. R. Soc. A 370, 2557–2577 (2012).
D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO0 lines,” J. Opt. Soc. Am. 59 (3), 267–280 (1969).
S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res 23 (3-4), 229–241 (1989).
Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128 (12), 124313 (2008).
L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].
S. D. Tvorogov and O. B. Rodimova, Collisional Profile of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian.
T. E. Klimeshina, Yu. V. Bogdanova, and O. B. Rodimova, “Continuum absorption by water vapor in the 8–12 and 3–5 mm atmospheric transparency windows,” Atmos. Oceanic Opt. 25 (1), 71–76 (2012).
A. S. Tulegenov, R. J. Wheatley, M. P. Hodges, and A. H. Harvey, “Intermolecular potential and second virial coefficient of the water–nitrogen complex,” J. Chem. Phys. 126 (2007).
A. Brown and R. H. Tipping, “Collision-induced absorption in dipolar molecule—homonuclear diatomic pairs,” in Proc. NATO, Ed. by C. Camy-Peyret and A.A. Vigasin (Kluwer, Dordrecht, 2003).
D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, “The CO2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum,” J. Quant. Spectrosc. Radiat. Transfer 187, 38–43 (2017).
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Van-Thanh Nguyen, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen, “Measurements and empirical modeling of pure CO2 absorption in the 2.3-µm region at room temperature: Far wings, allowed and collision-induced bands,” Appl. Opt. 35 (24), 4863–4870 (1996).
R. H. Tipping and Q. Ma, “Theory of the water vapor continuum and validations,” Atmos. Res. 36, 69–94 (1995).
O. B. Rodimova, “Carbon dioxide and water vapor continuum absorption in the infrared spectral region,” Atmos. Oceanic Opt. 31 (6), 564–569 (2018).
M. Birk, G. Wagner, J. Loos, and K. P. Shine, “3 µm water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum,” J. Quant. Spectrosc. Radiat. Transfer 253, 107134–1 (2020).
ACKNOWLEDGMENTS
The authors are grateful to I.V. Ptashnik for useful discussions.
Funding
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by O. Ponomareva
Rights and permissions
About this article
Cite this article
Rodimova, O.B., Klimeshina, T.E. Foreign-Continuum Absorption in the Wings of IR H2O Bands. Atmos Ocean Opt 34, 190–197 (2021). https://doi.org/10.1134/S1024856021030131
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856021030131