J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601–1 (2010).
ADS
Article
Google Scholar
K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21 (11), 827–829 (1996).
ADS
Article
Google Scholar
K. T. Gahagan and G. A. Swartzlander, Jr., “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15 (2), 524–534 (1998).
ADS
Article
Google Scholar
Guo Cheng-Shan, Yu Ya-Nan, and Hong Zhengping, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283, 1889–1893 (2010).
ADS
Article
Google Scholar
J. Wu, H. Li, and Y. Li, “Encoding information as orbital angular momentum states of light for wireless optical communications,” Opt. Eng. 46 (1), 019701–1 (2007).
ADS
Article
Google Scholar
G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12 (22), 5448–5456 (2004).
ADS
Article
Google Scholar
A. Popiolek-Masajada, J. Masajada, and P. Kurzynowski, “Analytical model of the optical vortex scanning microscope with a simple phase object,” Photonics 4 (38), 1–14 (2017).
Article
Google Scholar
A. L. Vadnjal, P. Etchepareborda, A. Federico, and G. H. Kaufmann, “Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images,” Appl. Opt. 52 (9), 1805–1813 (2013).
ADS
Article
Google Scholar
M. H. M. Passos, M. R. Lemos, S. R. Almeida, W. F. Balthazar, L. Da Silva, and J. A. O. Huguenin, “Speckle patterns produced by an optical vortex and its application to surface roughness measurements,” Appl. Opt. 56 (2), 330–335 (2017).
ADS
Article
Google Scholar
W. Wang, Y. Qiao, R. Ishijima, T. Yokozeki, D. Honda, A. Matsuda, S. G. Hanson, and M. Takeda, “Constellation of phase singularities in a specklelike pattern for optical vortex metrology applied to biological kinematic analysis,” Opt. Express 16 (18), 13908–13917 (2008).
ADS
Article
Google Scholar
X. Li, Y. Tai, L. Zhang, H. Li, and L. Li, “Characterization of dynamic random process using optical vortex metrology,” Appl. Phys. B 116, 901–909 (2014).
ADS
Article
Google Scholar
K. Patorski and K. Pokorski, “Examination of singular scalar light fields using wavelet processing of fork fringes,” Appl. Opt. 50 (5), 773–781 (2011).
ADS
Article
Google Scholar
H. Huang, J. Luo, Y. Matsui, H. Toyoda, and T. Inoue, “Eight-connected contour method for accurate position detection of optical vortices using Shack–Hartmann wavefront sensor,” Opt. Eng. 54 (11), 111302–1 (2015).
ADS
Article
Google Scholar
M. Chen and F. S. Roux, “Dipole Influence on Shack–Hartmann vortex detection in scintillated beams,” J. Opt. Soc. Am. A 25 (5), 1084–1090 (2008).
ADS
Article
Google Scholar
D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15 (10), 2759–2767 (1998).
ADS
MathSciNet
Article
Google Scholar
H. I. Sztul and R. R. Alfano, “Double-slit interference with Laguerre–Gaussian beams,” Opt. Lett. 31 (7), 999–1001 (2006).
ADS
Article
Google Scholar
B. Khajavi, R. G. Ureta, and E. J. Galvez, “Determining vortex-beam superpositions by shear interferometry,” Photonics 5 (16), 1–12 (2018).
Article
Google Scholar
R. Dzh. Oberg, COM+ Technology. Foundations and Coding (Vil’yams, Moscow, 2000) [in Russian].
Google Scholar
E. Trel’sen, COM Model and Application of ATL 3.0. (BKhV, St. Petersburg, 2000) [in Russian]
G. Indebetouw, “Optical vortices their propagation,” J. Mod. Opt. 40 (1), 73–87 (1993).
ADS
Article
Google Scholar
V. P. Lukin and B. V. Fortes, Adaptive Beam Generation and Imaging in the Atmosphere (Publishing House of Siberian Branch, Russian Academy of Sciences, Novosibirsk, 1999) [in Russian].
V. P. Kandidov, S. S. Chesnokov, and S. A. Shlenov, Discrete Fourier Transform (MSU, Moscow, 2019) [in Russian].
Google Scholar
O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Spatial behaviour of singularities in fractal- and Gaussian speckle fields,” Open Opt. J. 3, 29–43 (2009).
ADS
Article
Google Scholar
J. F. Nye, Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations (Institute of Physics Publishing, Bristol and Philadelphia, 1999).
MATH
Google Scholar
M. Chen, F. S. Roux, and J. C. Olivier, “Detection of phase singularities with a Shack–Hartmann wavefront sensor,” J. Opt. Soc. Am. A 24 (7), 1994–2002 (2007).
ADS
Article
Google Scholar
F. Yu. Kanev, V. P. Aksenov, and I. D. Veretekhin, “Registration of optical vortices with the Shack–Hartmann sensor,” Vestn. RFFI, No. 4, 8–10 (2018).
Article
Google Scholar
A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-Dunlop, R. McDuff, C. O. Weiss, and C. Tamm, “Interferometric measurements of phase singularities in the output of a visible laser,” J. Mod. Opt. 38 (12), 2531–2541 (1991).
ADS
Article
Google Scholar
V. G. Denisenko, A. Minovich, A. S. Desyatnikov, W. Krolikowski, M. S. Soskin, and Y. S. Kivshar, “Mapping phases of singular scalar light fields,” Opt. Lett. 33 (1), 89–91 (2008).
ADS
Article
Google Scholar
F. Yu. Kanev, V. P. Aksenov, F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, and I. D. Veretekhin, “Detection of an optical vortex topological charge and coordinates by analyzing branches of an interference pattern,” Opt. Atmos. Okeana 32 (8), 620–627 (2019).
Google Scholar