Skip to main content

Analysis of Accuracy of Optical Vortex Detection Algorithms


Application of four algorithms developed for detecting optical vortices in model problems of singular optics is considered. Computational schemes that should be constructed for the software implementation of the algorithms are presented and the input information required for the operation of the computer applications is specified. Special attention is paid to the accuracy in detecting the number and coordinates of singular points of a wavefront. Depending on the characteristic of the methods and input data volume, the areas of their possible use (experiments or purely numerical simulation) are determined.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.


  1. J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601–1 (2010).

    ADS  Article  Google Scholar 

  2. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21 (11), 827–829 (1996).

    ADS  Article  Google Scholar 

  3. K. T. Gahagan and G. A. Swartzlander, Jr., “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15 (2), 524–534 (1998).

    ADS  Article  Google Scholar 

  4. Guo Cheng-Shan, Yu Ya-Nan, and Hong Zhengping, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283, 1889–1893 (2010).

    ADS  Article  Google Scholar 

  5. J. Wu, H. Li, and Y. Li, “Encoding information as orbital angular momentum states of light for wireless optical communications,” Opt. Eng. 46 (1), 019701–1 (2007).

    ADS  Article  Google Scholar 

  6. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12 (22), 5448–5456 (2004).

    ADS  Article  Google Scholar 

  7. A. Popiolek-Masajada, J. Masajada, and P. Kurzynowski, “Analytical model of the optical vortex scanning microscope with a simple phase object,” Photonics 4 (38), 1–14 (2017).

    Article  Google Scholar 

  8. A. L. Vadnjal, P. Etchepareborda, A. Federico, and G. H. Kaufmann, “Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images,” Appl. Opt. 52 (9), 1805–1813 (2013).

    ADS  Article  Google Scholar 

  9. M. H. M. Passos, M. R. Lemos, S. R. Almeida, W. F. Balthazar, L. Da Silva, and J. A. O. Huguenin, “Speckle patterns produced by an optical vortex and its application to surface roughness measurements,” Appl. Opt. 56 (2), 330–335 (2017).

    ADS  Article  Google Scholar 

  10. W. Wang, Y. Qiao, R. Ishijima, T. Yokozeki, D. Honda, A. Matsuda, S. G. Hanson, and M. Takeda, “Constellation of phase singularities in a specklelike pattern for optical vortex metrology applied to biological kinematic analysis,” Opt. Express 16 (18), 13908–13917 (2008).

    ADS  Article  Google Scholar 

  11. X. Li, Y. Tai, L. Zhang, H. Li, and L. Li, “Characterization of dynamic random process using optical vortex metrology,” Appl. Phys. B 116, 901–909 (2014).

    ADS  Article  Google Scholar 

  12. K. Patorski and K. Pokorski, “Examination of singular scalar light fields using wavelet processing of fork fringes,” Appl. Opt. 50 (5), 773–781 (2011).

    ADS  Article  Google Scholar 

  13. H. Huang, J. Luo, Y. Matsui, H. Toyoda, and T. Inoue, “Eight-connected contour method for accurate position detection of optical vortices using Shack–Hartmann wavefront sensor,” Opt. Eng. 54 (11), 111302–1 (2015).

    ADS  Article  Google Scholar 

  14. M. Chen and F. S. Roux, “Dipole Influence on Shack–Hartmann vortex detection in scintillated beams,” J. Opt. Soc. Am. A 25 (5), 1084–1090 (2008).

    ADS  Article  Google Scholar 

  15. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15 (10), 2759–2767 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  16. H. I. Sztul and R. R. Alfano, “Double-slit interference with Laguerre–Gaussian beams,” Opt. Lett. 31 (7), 999–1001 (2006).

    ADS  Article  Google Scholar 

  17. B. Khajavi, R. G. Ureta, and E. J. Galvez, “Determining vortex-beam superpositions by shear interferometry,” Photonics 5 (16), 1–12 (2018).

    Article  Google Scholar 

  18. R. Dzh. Oberg, COM+ Technology. Foundations and Coding (Vil’yams, Moscow, 2000) [in Russian].

    Google Scholar 

  19. E. Trel’sen, COM Model and Application of ATL 3.0. (BKhV, St. Petersburg, 2000) [in Russian]

  20. G. Indebetouw, “Optical vortices their propagation,” J. Mod. Opt. 40 (1), 73–87 (1993).

    ADS  Article  Google Scholar 

  21. V. P. Lukin and B. V. Fortes, Adaptive Beam Generation and Imaging in the Atmosphere (Publishing House of Siberian Branch, Russian Academy of Sciences, Novosibirsk, 1999) [in Russian].

  22. V. P. Kandidov, S. S. Chesnokov, and S. A. Shlenov, Discrete Fourier Transform (MSU, Moscow, 2019) [in Russian].

    Google Scholar 

  23. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Spatial behaviour of singularities in fractal- and Gaussian speckle fields,” Open Opt. J. 3, 29–43 (2009).

    ADS  Article  Google Scholar 

  24. J. F. Nye, Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations (Institute of Physics Publishing, Bristol and Philadelphia, 1999).

    MATH  Google Scholar 

  25. M. Chen, F. S. Roux, and J. C. Olivier, “Detection of phase singularities with a Shack–Hartmann wavefront sensor,” J. Opt. Soc. Am. A 24 (7), 1994–2002 (2007).

    ADS  Article  Google Scholar 

  26. F. Yu. Kanev, V. P. Aksenov, and I. D. Veretekhin, “Registration of optical vortices with the Shack–Hartmann sensor,” Vestn. RFFI, No. 4, 8–10 (2018).

    Article  Google Scholar 

  27. A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-Dunlop, R. McDuff, C. O. Weiss, and C. Tamm, “Interferometric measurements of phase singularities in the output of a visible laser,” J. Mod. Opt. 38 (12), 2531–2541 (1991).

    ADS  Article  Google Scholar 

  28. V. G. Denisenko, A. Minovich, A. S. Desyatnikov, W. Krolikowski, M. S. Soskin, and Y. S. Kivshar, “Mapping phases of singular scalar light fields,” Opt. Lett. 33 (1), 89–91 (2008).

    ADS  Article  Google Scholar 

  29. F. Yu. Kanev, V. P. Aksenov, F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, and I. D. Veretekhin, “Detection of an optical vortex topological charge and coordinates by analyzing branches of an interference pattern,” Opt. Atmos. Okeana 32 (8), 620–627 (2019).

    Google Scholar 

Download references


The major part of data presented in this paper was obtained under the financial support of the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences). Modeling the algorithms and carrying out numerical experiments whose results are presented in Sections 3 and 4 were supported by the Russian Science Foundation (project no. 20-19-00-597). The development of the numerical models used in this work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. P. Aksenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanev, F.Y., Aksenov, V.P. & Veretekhin, I.D. Analysis of Accuracy of Optical Vortex Detection Algorithms. Atmos Ocean Opt 34, 161–173 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • optical vortices
  • singular points of wavefront
  • local tilts of wavefront
  • Shack–Hartmann sensor