Skip to main content

H2O Absorption Line Parameters in the 5900–6100-cm−1 Spectral Region


H2O absorption lines broadened by air pressure were recorded in the 5900–6100-cm−1 spectral region with the use of a Bruker IFS 125 HR spectrometer. The intensities and broadening and shift coefficients of H2O absorption lines are determined for the Voigt profile and the modified Voigt profile which takes into account the dependence of the broadening on the speed of the colliding molecules. The atmospheric transmission is calculated with the use of H2O line parameters from different versions of the HITRAN and GEISA spectroscopic databases and our new data. Model spectra are compared with atmospheric solar spectra measured with a ground-based Fourier spectrometer. It is shown that the use of our new data on H2O absorption line parameters improves the agreement between the model and measured atmospheric spectra.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. D. Wunch, G. C. Toon, J. F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369 (1943), 2087–2112 (2011).

  2. Cited November 14, 2020.

  3. C. Frankenberg, P. Bergamaschi, A. Butz, S. Houweling, J. F. Meirink, J. Notholt, A. K. Petersen, H. Schrijver, T. Warneke, and I. Aben, “Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT,” Geophys. Rev. Lett. 35, L15811 (2008).

  4. A. Jenouvrier, L. Daumont, L. Regali-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier transform measurements of water vapor line parameters in the 4200–6600 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 105, 326–355 (2007).

    ADS  Article  Google Scholar 

  5. T. Yu. Chesnokova, A. V. Chentsov, and K. M. Firsov, “Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region,” J. Appl. Remote Sens. 14 (3), 034510 (2020).

    ADS  Article  Google Scholar 

  6. Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, T. M. Petrova, and O. V. Naumenko, “FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra,” J. Quant. Spectrosc. Radiat. Transfer 177, 253–260 (2016).

    ADS  Article  Google Scholar 

  7. A. P. Shcherbakov, “Application of pattern recognition theory to identification of the rovibrational spectral lines,” Atmos. Ocean. Opt. 10 (8), 591–597 (1997).

    Google Scholar 

  8. T. M. Petrova, A. M. Solodov, A. P. Shcherbakov, V. M. Deichuli, A. A. Solodov, Yu. N. Ponomarev, and T. Yu. Chesnokova, “Parameters of broadening of water molecule absorption lines by argon derived using different line profile models,” Atmos. Ocean. Opt. 30 (2), 123–128 (2017).

    Article  Google Scholar 

  9. N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).

    ADS  Article  Google Scholar 

  10. H. Tran, N. H. Ngo, and J.-M. Hartmann, “Efficient computation of some speed-dependent isolated line profiles,” J. Quant. Spectrosc. Radiat. Transfer 129, 199–203 (2013).

    ADS  Article  Google Scholar 

  11. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tana, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, Auwera J. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    ADS  Article  Google Scholar 

  12. N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, D. C. Benner, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, Auwera J. Vander, B. A. Voronin, and A. Makie, “The 2015 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–72 (2016).

    ADS  Article  Google Scholar 

  13. R. A. Toth, L. R. Brown, C. E. Miller, Devi V. Malathy, and Benner D. Chris, “Line strengths of 12C16O2: 4550–7000 cm–1,” J. Mol. Spectrosc. 239 (2), 221–242 (2006).

    ADS  Article  Google Scholar 

  14. V. T. Sironneau and J. T. Hodges, “Line shapes, positions and intensities of water transitions near 1.28 µm,” J. Quant. Spectrosc. Radiat. Transfer 152, 1–15 (2015).

    ADS  Article  Google Scholar 

  15. L. Lodi, J. Tennyson, and O. L. Polyansky, “A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule,” J. Chem. Phys. 135, 034113–1 (2011).

    ADS  Article  Google Scholar 

  16. K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.‑M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov, “Developing a Western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing),” Atmos. Chem. Phys. 14, 5943–5957 (2014).

    ADS  Article  Google Scholar 

  17. M. Palm, “Theoretical background SFIT 4,” in Sfit4 Error Analysis Workshop (2013).

  18. C. P. Rinsland, B. J. Nicholas, B. J. Connor, J. A. Logan, N. S. Pougatchev, A. Goldman, F. J. Murcray, T. M. Stephen, A. S. Pine, R. Zander, E. Mahieu, and P. Demoullin, “Northern and Southern Hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane,” J. Geophys. Res. D 103, 28197–28218 (1998).

    ADS  Article  Google Scholar 

  19. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” B. Am. Meteorol. Soc. 77, 437–471 (1996).

    ADS  Article  Google Scholar 

  20. Cited November 14, 2020.

  21. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITR-AN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  22. N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, BennerD. Chris, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L. H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J.‑M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, Xu. Li-Hong, O. M. Lyulin, J.-Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Muller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A.-C. Vandaele, and Auwera J. Vander, “The 2009 edition of the GEISA spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 112 (15), 2395–2445 (2011).

    ADS  Article  Google Scholar 

  23. J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 11 (9), 4273–4287 (2011).

    ADS  Article  Google Scholar 

Download references


The work was supported by the Russian Foundation for Basic Research (grant no. 18-45-700011 r_a) and the Program of Fundamental Research for State Academies of Sciences and by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. M. Petrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deichuli, V.M., Petrova, T.M., Solodov, A.M. et al. H2O Absorption Line Parameters in the 5900–6100-cm−1 Spectral Region. Atmos Ocean Opt 34, 184–189 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • water vapor
  • Fourier transform spectroscopy
  • atmospheric transmission
  • absorption line parameters