Abstract
The results of experimental and theoretical studies of the evolution of the small-scale transverse structure of high-power femtosecond laser radiation propagating in air in the multiple filamentation mode are presented. It has been found that the presence of intensity inhomogeneities in the initial transverse profile of the laser beam leads to the formation of spatially isolated light channels due to the Kerr self-focusing effect. When the power in these channels exceeds a certain threshold value (the critical power), radiation filamentation occurs in them. The parameters of these light channels are theoretically estimated on the basis of the diffraction-ray model of single filamentation. It is shown that for a laser beam with a centimeter radius and subterawatt power, the initial radius of intensity inhomogeneities in the transverse profile has a characteristic value of several millimeters.
This is a preview of subscription content, access via your institution.





REFERENCES
Self-focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009).
J.-F. Daigle, O. G. Kosareva, N. A. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011).
G. Mechain, A. Couairon, Y.-B. Andre, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79 (3), 379–382 (2004).
G. Mechain, C. D’Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Theberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).
D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Localized high-intensity light structures during multiple filamentation of Ti:Sapphire-laser femtosecond pulses along an air path,” Atmos. Ocean. Opt. 31 (2), 107–111 (2018).
V. I. Bespalov, A. G. Litvak, and V. I. Talanov, “Self-action of electromagnetic waves in cubic isotropic media,” in Nonlinear Optics (Nauka, Novosibirsk, 1968), p. 428–463 [in Russian].
D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and V. K. Oshlakov, Filamentation of Femtosecond Laser Pulses in Air, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2017) [in Russian].
V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39 (3), 205–228 (2009).
Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, A. M. Kabanov, and A. V. Petrov, “Microstructure of the multiple-filamentation zone formed by femtosecond laser radiation in a solid dielectric,” Quantum Electron. 46 (2), 133–141 (2016).
D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of collimated laser radiation in water and glass,” Atmos. Ocean. Opt. 29 (2), 135–140 (2016).
Yu. E. Geints, A. A. Zemlyanov, and O. V. Minina, “Diffraction-beam optics of filamentation: I—Formalism of diffraction beams and light tubes,” Atmos. Ocean. Opt. 31 (6), 611–618 (2018).
S. G. Rautian, “Quasi-ray tubes,” Opt. Spektroskop. 87 (3), 494–498 (1999).
D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Multiple filamentation of laser beams of different diameters in air along a 150-meter path,” Atmos. Ocean. Opt. 29 (3), 263–266 (2016).
A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20 (1), 73–75 (1995).
E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21 (1), 62–64 (1996).
A. A. Zemlyanov, Yu. E. Geints, and O. V. Minina, “Estimation of the characteristics of the domain of multiple filamentation of femtosecond laser pulses in air based on the single filamentation model,” Atmos. Ocean. Opt. 33 (2), 117–123 (2020).
Yu. E. Geints, O. V. Minina, and A. A. Zemlyanov, “Diffraction-ray tubes analysis of ultrashort high-intense laser pulse filamentation in air,” J. Opt. Soc. Am. B 36 (12), 3209–3217 (2019).
Funding
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Apeximov, D.V., Geints, Y.E., Zemlyanov, A.A. et al. Spatial Structure of Femtosecond Laser Radiation during Filamentation in Air. Atmos Ocean Opt 34, 174–179 (2021). https://doi.org/10.1134/S1024856021030039
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856021030039