Skip to main content

Spatial Structure of Femtosecond Laser Radiation during Filamentation in Air


The results of experimental and theoretical studies of the evolution of the small-scale transverse structure of high-power femtosecond laser radiation propagating in air in the multiple filamentation mode are presented. It has been found that the presence of intensity inhomogeneities in the initial transverse profile of the laser beam leads to the formation of spatially isolated light channels due to the Kerr self-focusing effect. When the power in these channels exceeds a certain threshold value (the critical power), radiation filamentation occurs in them. The parameters of these light channels are theoretically estimated on the basis of the diffraction-ray model of single filamentation. It is shown that for a laser beam with a centimeter radius and subterawatt power, the initial radius of intensity inhomogeneities in the transverse profile has a characteristic value of several millimeters.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Self-focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009).

    Google Scholar 

  2. J.-F. Daigle, O. G. Kosareva, N. A. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011).

    Article  ADS  Google Scholar 

  3. G. Mechain, A. Couairon, Y.-B. Andre, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79 (3), 379–382 (2004).

    Article  Google Scholar 

  4. G. Mechain, C. D’Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).

    Article  ADS  Google Scholar 

  5. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Theberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).

    Article  ADS  Google Scholar 

  6. D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Localized high-intensity light structures during multiple filamentation of Ti:Sapphire-laser femtosecond pulses along an air path,” Atmos. Ocean. Opt. 31 (2), 107–111 (2018).

    Article  Google Scholar 

  7. V. I. Bespalov, A. G. Litvak, and V. I. Talanov, “Self-action of electromagnetic waves in cubic isotropic media,” in Nonlinear Optics (Nauka, Novosibirsk, 1968), p. 428–463 [in Russian].

    Google Scholar 

  8. D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and V. K. Oshlakov, Filamentation of Femtosecond Laser Pulses in Air, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2017) [in Russian].

    Google Scholar 

  9. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39 (3), 205–228 (2009).

    Article  ADS  Google Scholar 

  10. Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, A. M. Kabanov, and A. V. Petrov, “Microstructure of the multiple-filamentation zone formed by femtosecond laser radiation in a solid dielectric,” Quantum Electron. 46 (2), 133–141 (2016).

    Article  ADS  Google Scholar 

  11. D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of collimated laser radiation in water and glass,” Atmos. Ocean. Opt. 29 (2), 135–140 (2016).

    Article  Google Scholar 

  12. Yu. E. Geints, A. A. Zemlyanov, and O. V. Minina, “Diffraction-beam optics of filamentation: I—Formalism of diffraction beams and light tubes,” Atmos. Ocean. Opt. 31 (6), 611–618 (2018).

    Article  Google Scholar 

  13. S. G. Rautian, “Quasi-ray tubes,” Opt. Spektroskop. 87 (3), 494–498 (1999).

    Google Scholar 

  14. D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Multiple filamentation of laser beams of different diameters in air along a 150-meter path,” Atmos. Ocean. Opt. 29 (3), 263–266 (2016).

    Article  Google Scholar 

  15. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20 (1), 73–75 (1995).

    Article  ADS  Google Scholar 

  16. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21 (1), 62–64 (1996).

    Article  ADS  Google Scholar 

  17. A. A. Zemlyanov, Yu. E. Geints, and O. V. Minina, “Estimation of the characteristics of the domain of multiple filamentation of femtosecond laser pulses in air based on the single filamentation model,” Atmos. Ocean. Opt. 33 (2), 117–123 (2020).

    Article  Google Scholar 

  18. Yu. E. Geints, O. V. Minina, and A. A. Zemlyanov, “Diffraction-ray tubes analysis of ultrashort high-intense laser pulse filamentation in air,” J. Opt. Soc. Am. B 36 (12), 3209–3217 (2019).

    Article  ADS  Google Scholar 

Download references


The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. A. Zemlyanov or O. V. Minina.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apeximov, D.V., Geints, Y.E., Zemlyanov, A.A. et al. Spatial Structure of Femtosecond Laser Radiation during Filamentation in Air. Atmos Ocean Opt 34, 174–179 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: