Skip to main content

Simulation of Brightness Fields of Solar Radiation in the Presence of Optically Anisotropic Ice-Crystal Clouds: Algorithm and Test Results


An original algorithm of statistical simulation of the solar radiative transfer in the presence of ice-crystal clouds, optically anisotropic with respect to the zenith angle of incident radiation, is presented. Examples of preliminarily calculated local optical characteristics of clouds composed of horizontally oriented plates (without accounting for the internal absorption) are given. The software developed was tested within two numerical experiments. The first experiment compared the calculations of reflected radiation for an isotropic medium using the algorithm developed earlier for clouds composed of chaotically oriented particles, and the algorithm presented in this work. The second experiment compared the angular dependence of upward radiation and the scattering phase function in ice-crystal clouds composed of horizontally oriented plates. The numerical experiments indicate that, when this algorithm is used in the radiative transfer simulation, the properties of an optically anisotropic medium are taken adequately into account.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26 (1), 138–147 (1969).

    ADS  Article  Google Scholar 

  2. R. G. Greenler, A. J. Mallmann, M. Drinkwine, and G. Blumenthal, “The origin of sunpillars,” Am. Sci. 60, 292–302 (1972).

    ADS  Google Scholar 

  3. K. Sassen, “Remote sensing of planar ice crystals fall attitude,” J. Meteorol. Soc. Jpn. 58 (5), 422–429 (1980).

    ADS  Article  Google Scholar 

  4. B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Ocean. Opt. 18 (11), 866–870 (2005).

    Google Scholar 

  5. V. P. Galileiskii, A. G. Borovoi, G. G. Matvienko, and A. M. Morozov, “Specularly reflected component at light scattering by ice crystals with predominant orientation, ” Atmos. Ocean. Opt. 21 (9), 668–673 (2008).

    Google Scholar 

  6. A. Borovoi, V. Galileiski, A. Morozov, and A. Cohen, “Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light,” Opt. Express 16 (11), 7625–7633 (2008).

    ADS  Article  Google Scholar 

  7. V. P. Galileiskii, B. V. Kaul’, G. G. Matvienko, and A. M. Morozov, “Angular structure of the light intensity near the angles of mirror reflection from the faces of ice crystalline particles,” Atmos. Ocean. Opt. 22 (5), 506–512 (2009).

    Article  Google Scholar 

  8. A. M. Morozov, V. P. Galileiskii, A. I. Elizarov, and D. V. Kokarev, “Observation of the mirror reflection of lighted underlying surface by a cloudy layer of ice plates,” Opt. Atmos. Okeana 30 (1), 88–92 (2017).

    Google Scholar 

  9. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Ice-Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [inRussian].

    Google Scholar 

  10. Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications, Ed. by M. I. Mishchenko, J. W. Hovenier, and I. D. Travis (Academic Press, San Diego, 2000).

    Google Scholar 

  11. H. Chepfer, G. Brogniez, P. Goloub, M. B. Francois, and P. H. Flamant, “Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1,” J. Quant. Spectrosc. Radiat. Transfer 63 (2–6), 521–543 (1999).

    ADS  Article  Google Scholar 

  12. F. M. Breon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61 (23), 2888–2898 (2004).

    ADS  Article  Google Scholar 

  13. V. Noel and N. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115 (D00H23) (2010).

  14. C. D. Westbrook, A. J. Illingworth, E. J. O. Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136 (646), 260–276 (2010).

    ADS  Article  Google Scholar 

  15. V. Noel and N. Chepfer, “Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements,” J. Atmos. Sci. 61 (16), 2073–2081 (2005).

    ADS  Article  Google Scholar 

  16. C. Zhou, P. Yang, A. E. Dessler, and F. Liang, “Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations,” IEEE Geosci. Remote Sens. Lett. 10 (5), 996–990 (2013).

    ADS  Article  Google Scholar 

  17. Y. Takano and K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46 (1), 20–36 (1989).

    ADS  Article  Google Scholar 

  18. K. Masuda and H. Ishimoto, “Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements,” J. Quant. Spectrosc. Radiat. Transfer 85 (2), 183–193 (2004).

    ADS  Article  Google Scholar 

  19. A. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocity,” J. Atmos. Sci. 57 (7), 916–938 (2000).

    ADS  Article  Google Scholar 

  20. C. D. Westbrook, “The fall speeds of sub-100 mm ice crystals,” Q. J. R. Meteorol. Soc 134 (2008).

  21. P. Spichtinger and K. M. Gierens, “Modelling of cirrus clouds—Part 1b: Structuring cirrus clouds by dynamics,” Atmos. Chem. Phys. 9 (2), 707–719 (2009).

    ADS  Article  Google Scholar 

  22. H. Runheng and K.-N. Liou, “Effects of horizontal orientation on the radiative properties of ice clouds,” Adv. Atmos. Sci. 2 (1), 20–27 (1985).

    Article  Google Scholar 

  23. C. Lavigne, A. Roblin, and P. Chervet, “Solar glint from oriented crystals in cirrus clouds,” Appl. Opt. 47 (33), 6266–6276 (2008).

    ADS  Article  Google Scholar 

  24. S. M. Prigarin, A. G. Borovoi, P. Bruscaglioni, A. Cohen, I. A. Grishin, U. G. Oppel, and T. B. Zhuravleva, “Monte Carlo simulation of radiation transfer in optically anisotropic clouds,” Proc. SPIE—Int. Soc. Opt. Eng. 5829, 88–94 (2005).

  25. S. M. Prigarin, A. G. Borovoi, I. A. Grishin, and U. G. Oppel’, “Statistical simulation of radiative transfer in optically anisotropic ice clouds,” Atmos. Ocean. Opt. 20 (3), 183–188 (2007).

    Google Scholar 

  26. S. M. Prigarin, “Numerical simulation of halo in crystal clouds by Monte Carlo method,” Russ. J. Num. Anal. Math. Modelling 24 (5), 481–494 (2009).

    MathSciNet  MATH  Google Scholar 

  27. A. Borovoi, I. Grishin, and U. Oppel, “Mueller matrix for oriented hexagonal ice crystals of cirrus clouds,” in Proc. XI Intern. Workshop on Multiple Scattering LIDAR Experiments (MUSCLE 11) (Williamsburg, Virginia, USA: NASA Langley Research Center, 2000), p. 81–89.

  28. A. Borovoi and I. Grishin, “Scattering matrices for large crystal particles,” J. Opt. Soc. Am. A 20 (11), 2071–2080 (2003).

    ADS  Article  Google Scholar 

  29. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, The Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  30. Y. Takano and K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).

    ADS  Article  Google Scholar 

  31. T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2), 81–95 (2008).

    Google Scholar 

  32. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteor. Soc. 79, 831–844 (1998).

    ADS  Article  Google Scholar 

Download references


The authors thank S.M. Prigarin (Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk) for fruitful discussions on the topic of this research, as well as I.A. Grishin (formerly Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk), who calculated the optical characteristics of horizontally oriented particles as part of the collaborative works supported by the Russian Foundation for Basic Research (grant no. 06-05-64484), and by the International Association for the promotion of cooperation with scientists from the New Independent States of the former Soviet Union (INTAS) (grant no. 05-1000008-8024).


The software for the algorithm of statistical simulation of radiative transfer in optically anisotropic clouds was developed with the support of the Russian Foundation for Basic Research (grant no. 19-01-00351); and the radiation computations were performed within the State Assignment of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk.

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. B. Zhuravleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, T.B. Simulation of Brightness Fields of Solar Radiation in the Presence of Optically Anisotropic Ice-Crystal Clouds: Algorithm and Test Results. Atmos Ocean Opt 34, 140–147 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • radiative transfer
  • Monte Carlo method
  • optical anisotropy
  • horizontally oriented plates