A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26 (1), 138–147 (1969).
ADS
Article
Google Scholar
R. G. Greenler, A. J. Mallmann, M. Drinkwine, and G. Blumenthal, “The origin of sunpillars,” Am. Sci. 60, 292–302 (1972).
ADS
Google Scholar
K. Sassen, “Remote sensing of planar ice crystals fall attitude,” J. Meteorol. Soc. Jpn. 58 (5), 422–429 (1980).
ADS
Article
Google Scholar
B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Ocean. Opt. 18 (11), 866–870 (2005).
Google Scholar
V. P. Galileiskii, A. G. Borovoi, G. G. Matvienko, and A. M. Morozov, “Specularly reflected component at light scattering by ice crystals with predominant orientation, ” Atmos. Ocean. Opt. 21 (9), 668–673 (2008).
Google Scholar
A. Borovoi, V. Galileiski, A. Morozov, and A. Cohen, “Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light,” Opt. Express 16 (11), 7625–7633 (2008).
ADS
Article
Google Scholar
V. P. Galileiskii, B. V. Kaul’, G. G. Matvienko, and A. M. Morozov, “Angular structure of the light intensity near the angles of mirror reflection from the faces of ice crystalline particles,” Atmos. Ocean. Opt. 22 (5), 506–512 (2009).
Article
Google Scholar
A. M. Morozov, V. P. Galileiskii, A. I. Elizarov, and D. V. Kokarev, “Observation of the mirror reflection of lighted underlying surface by a cloudy layer of ice plates,” Opt. Atmos. Okeana 30 (1), 88–92 (2017).
Google Scholar
O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Ice-Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [inRussian].
Google Scholar
Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications, Ed. by M. I. Mishchenko, J. W. Hovenier, and I. D. Travis (Academic Press, San Diego, 2000).
Google Scholar
H. Chepfer, G. Brogniez, P. Goloub, M. B. Francois, and P. H. Flamant, “Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1,” J. Quant. Spectrosc. Radiat. Transfer 63 (2–6), 521–543 (1999).
ADS
Article
Google Scholar
F. M. Breon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61 (23), 2888–2898 (2004).
ADS
Article
Google Scholar
V. Noel and N. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115 (D00H23) (2010). https://doi.org/10.1029/2009JD012365
C. D. Westbrook, A. J. Illingworth, E. J. O. Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136 (646), 260–276 (2010).
ADS
Article
Google Scholar
V. Noel and N. Chepfer, “Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements,” J. Atmos. Sci. 61 (16), 2073–2081 (2005).
ADS
Article
Google Scholar
C. Zhou, P. Yang, A. E. Dessler, and F. Liang, “Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations,” IEEE Geosci. Remote Sens. Lett. 10 (5), 996–990 (2013).
ADS
Article
Google Scholar
Y. Takano and K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46 (1), 20–36 (1989).
ADS
Article
Google Scholar
K. Masuda and H. Ishimoto, “Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements,” J. Quant. Spectrosc. Radiat. Transfer 85 (2), 183–193 (2004).
ADS
Article
Google Scholar
A. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocity,” J. Atmos. Sci. 57 (7), 916–938 (2000).
ADS
Article
Google Scholar
C. D. Westbrook, “The fall speeds of sub-100 mm ice crystals,” Q. J. R. Meteorol. Soc 134 (2008).
P. Spichtinger and K. M. Gierens, “Modelling of cirrus clouds—Part 1b: Structuring cirrus clouds by dynamics,” Atmos. Chem. Phys. 9 (2), 707–719 (2009).
ADS
Article
Google Scholar
H. Runheng and K.-N. Liou, “Effects of horizontal orientation on the radiative properties of ice clouds,” Adv. Atmos. Sci. 2 (1), 20–27 (1985).
Article
Google Scholar
C. Lavigne, A. Roblin, and P. Chervet, “Solar glint from oriented crystals in cirrus clouds,” Appl. Opt. 47 (33), 6266–6276 (2008).
ADS
Article
Google Scholar
S. M. Prigarin, A. G. Borovoi, P. Bruscaglioni, A. Cohen, I. A. Grishin, U. G. Oppel, and T. B. Zhuravleva, “Monte Carlo simulation of radiation transfer in optically anisotropic clouds,” Proc. SPIE—Int. Soc. Opt. Eng. 5829, 88–94 (2005).
S. M. Prigarin, A. G. Borovoi, I. A. Grishin, and U. G. Oppel’, “Statistical simulation of radiative transfer in optically anisotropic ice clouds,” Atmos. Ocean. Opt. 20 (3), 183–188 (2007).
Google Scholar
S. M. Prigarin, “Numerical simulation of halo in crystal clouds by Monte Carlo method,” Russ. J. Num. Anal. Math. Modelling 24 (5), 481–494 (2009).
MathSciNet
MATH
Google Scholar
A. Borovoi, I. Grishin, and U. Oppel, “Mueller matrix for oriented hexagonal ice crystals of cirrus clouds,” in Proc. XI Intern. Workshop on Multiple Scattering LIDAR Experiments (MUSCLE 11) (Williamsburg, Virginia, USA: NASA Langley Research Center, 2000), p. 81–89.
A. Borovoi and I. Grishin, “Scattering matrices for large crystal particles,” J. Opt. Soc. Am. A 20 (11), 2071–2080 (2003).
ADS
Article
Google Scholar
G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, The Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].
Google Scholar
Y. Takano and K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).
ADS
Article
Google Scholar
T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2), 81–95 (2008).
Google Scholar
M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteor. Soc. 79, 831–844 (1998).
ADS
Article
Google Scholar