C. Saunders, “Charge separation mechanisms in clouds,” Space Sci Rev. 137, 335–353 (2008).
ADS
Article
Google Scholar
A. A. Sin’kevich and Yu. A. Dovgalyuk, “Corona discharge in clouds,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 56 (11-12), 908–919 (2013).
Google Scholar
A. A. Sin’kevich and T. V. Kraus, “Effect of crystallizing reagents on convective clouds with the aim of an increase in precipitation,” in Radar Meteorology and Active Impacts (Main Geophysical Observatory, St. Petersburg, 2012), p. 30–49 [in Russian].
Google Scholar
M. T. Abshaev, I. I. Burtsev, S. I. Vaksenburg, and G. F. Shevela, Manual on the Use of MRL-4, MRL-5, and MRL-6 Radars in Thunderstorm Protection System (Gidrometeoizdat, Leningrad, 1980) [in Russian].
Google Scholar
A. A. Sin’kevich, Yu. P. Mikhailovskii, Yu. A. Dovgalyuk, N. E. Veremei, E. V. Bogdanov, A. Kh. Adzhiev, A. M. Malkarova, and A. M. Abshaev, “Investigations of the development of thunderstorm with hail. Part 1. Cloud development and formation of electric discharges,” Rus. Meteorol. Hydrol. 41 (9), 610–619 (2016).
Article
Google Scholar
A. M. Abshaev, M. T. Abshaev, A. M. Malkarova, and M. V. Barekova, Manual on the Organization and Implementation of Thunderstorm Protection (Pechatnyi dvor, Nal’chik, 2014) [in Russian].
A. Kh. Adzhiev, A. A. Adzhieva, A. M. Abshaev, and N. V. Yurchenko, “Instruments and techniques for synchronous recording of microphysical and electric parameters of convective clouds,” Pribory Tekhnika Eksperimenta, No. 5, 151–152 (2015).
Google Scholar
F. Wilcoxon, “Individual comparisons by ranking methods,” Biometr. Bull. 1, 80–83 (1945).
Article
Google Scholar
T. W. Kraus, A. A. Sin’kevich, N. E. Veremey, Yu. A. Dovgalyuk, and V. D. Stepanenko, “Study of the development of an extremely high cumulonimbus cloud (Andhra Pradesh, India, September 28, 2004),” Rus. Meteorol. Hydrol. 32 (1), 19–27 (2007).
Article
Google Scholar
T. V. Prabha, A. Khain, R. S. Maheshkumar, G. Pandithurai, J. R. Kulkarni, M. Konwar, and B. N. Goswami, “Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX),” J. Atmos. Sci. 68, 1882–1901 (2011).
ADS
Article
Google Scholar
Bera Sudarsan, “Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing,” J. Geophys. Res.: Atmos. 121 (2016). https://doi.org/10.1002/2016JD025133
K. V. Beard, “Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms,” Atmos. Res. 28, 125–152 (1992).
Article
Google Scholar
G. Manohar and A. Kesarkar, “Climatology of thunderstorm activity over the Indian region: II. Spatial distribution,” Mausam 55, 31–40 (2004).
Google Scholar
S. Patra and M. Kalapureddy, “Cloud microphysical profile differences pertinent to monsoon phases: Inferences from a cloud radar,” Meteorol. Atmos. Phys. (2019). https://doi.org/10.1007/s00703-019-00666-9