Skip to main content

The Relationship between the Ultraviolet Radiation and Meteorological Factors and Atmospheric Turbidity: Part II. Role of Surface Albedo

Abstract

We analyze the interrelation between variations in the surface ultraviolet radiation in the wavelength range 280–320 nm and the state of the underlying surface. This is done using a homogeneous time series of measurements of UV–B radiation at the Tropospheric Ozone Research (TOR) station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, the atmospheric infrared sounder (AIRS) data on columnar ozone, ground-based aerosol optical depth (AOD) measurements from the AERONET network, and data on cloud cover available from the Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences (IMCES SB RAS) meteorological site for 2004–2016.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. K. E. Trenberth, J. Fasullo, and M. A. Balmaseda, “Earth’s energy imbalance,” J. Clim. 27 (9), 3129–3144 (2014).

    ADS  Article  Google Scholar 

  2. G. L. Stephens and T. l’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).

    Article  Google Scholar 

  3. A. Sanchez-Lorenzo, A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicente-Serrano, A. Sanchez-Romero, R. Posselt, and M. Z. Hakuba, “Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010,” Remote Sens. Environ. 189, 108–117 (2017).

    ADS  Article  Google Scholar 

  4. B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “The relationship between ultraviolet radiation and meteorological factors and atmospheric turbidity: Part I. Role of total ozone content, clouds, and aerosol optical depth,” Atmos. Ocean. Opt. 33 (6), 638–644 (2020).

    Article  Google Scholar 

  5. S. P. Khromov and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  6. K. Ya. Kondratyev, Radiation in the Atmosphere (Academic Press, New York, London, 1969).

    Google Scholar 

  7. B. D. Belan and T. K. Sklyadneva, “Albedo of some types of the underlying surface in Western Siberia,” Optika Atmos. Okeana 18 (8), 727–730 (2005).

    Google Scholar 

  8. A. Kylling, A. Dahlback, and B. Mayer, “The effect of clouds and surface albedo on UV irradiances at a high latitude site,” Geophys. Rev. Lett. 27 (9), 1411–1414 (2000).

    ADS  Article  Google Scholar 

  9. S. Simic, P. Weihs, A. Vacek, H. Kromp-Kolb, and M. Fitzka, “Spectral UV measurements in Austria from 1994 to 2006: Investigations of short- and long-term changes,” Atmos. Chem. Phys., No. 8, 7033–7043 (2008).

  10. C. Di Biagio, A. di Sarra, P. Eriksen, S. E. Ascanius, G. Muscari, and B. Holben, “Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic,” Clim. Dyn. 39 (3-4), 953–969 (2012).

    Article  Google Scholar 

  11. E. I. Nezval’ and N. E. Chubarova, “Long-term variability of UV radiation in the spectral range of 300–380 nm in Moscow,” Rus. Meteorol. Hydrol. 42 (11), 693–699 (2017).

    Article  Google Scholar 

  12. D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 years of the tropospheric ozone research station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Ocean. Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  13. D. M. Kabanov, S. M. Sakerin, and Yu. S. Turchinovich, “Interannual and seasonal variations in the atmospheric aerosol optical depth in the region of Tomsk (1995–2018),” Atmos. Ocean. Opt. 32 (6), 663–670 (2019).

    Article  Google Scholar 

  14. Ecological and Climatic Characterization of the Atmosphere in 2012 from MSU Observatory Data (MAKS Press, Moscow, 2013) [in Russian].

  15. B. P. Alisov and B. V. Poltaraus, Climatology (Moscow State University, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-05-50 024). The grant works were implemented using the infrastructure of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, created and operated within State Assignment no. АААА-А17-117021310142-5, including the “Atmosphere” Common Use Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belan, B.D., Ivlev, G.A. & Sklyadneva, T.K. The Relationship between the Ultraviolet Radiation and Meteorological Factors and Atmospheric Turbidity: Part II. Role of Surface Albedo. Atmos Ocean Opt 34, 128–133 (2021). https://doi.org/10.1134/S1024856021020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021020020

Keywords:

  • atmosphere
  • ultraviolet radiation
  • total ozone content
  • clouds
  • variations
  • albedo of the underlying surface