B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermore, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federal instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).
Article
ADS
Google Scholar
A. M. Sayer, N. C. Hsu, J. Lee, W. V. Kim, and S. T. Dutcher, “Validation, stability, and consistency of MODIS Collection 6.1 and VIIRS Version 1 deep blue aerosol data over land,” J. Geophys. Res.: Atmos. 124 (8), 4658–4688 (2019).
Article
ADS
Google Scholar
R. C. Levy, L. A. Munchak, S. Mattoo, F. Patadia, L. A. Reme, and R. E. Holz, “Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance,” Atmos. Meas. Tech. 8, 4083–4110 (2015).
Article
Google Scholar
L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62 (4), 947–973 (2005).
Article
ADS
Google Scholar
T. Holzer-Popp, G. de Leeuw, J. Griesfeller, D. Martynenko, L. Kluser, S. Bevan, W. Davies, F. Ducos, J. L. Deuze, R. G. Graigner, A. Heckel, W. von Hoyningen-Hune, P. Kolmonen, P. Litvinov, P. North, C. A. Poulsen, D. Ramon, R. Siddans, L. Sogacheva, D. Tanre, G. E. Thomas, M. Vountas, J. Descloitres, J. Griesfeller, S. Kinne, M. Schulz, and S. Pinnock, “Aerosol retrieval experiments in the ESA Aerosol_cci project,” Atmos. Meas. Tech. 6, 1919–1957 (2013).
Article
Google Scholar
H. Jethva, O. Torres, and C. Ahn, “Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion,” J. Geophys. Res.: Atmos. 119 (14), 9020–9040 (2014).
Article
ADS
Google Scholar
S. V. Afonin, V. V. Belov, B. D. Belan, M. V. Panchenko, S. M. Sakerin, and D. M. Kabanov, “Comparison of satellite (AVHRR/NOAA) and ground-based measurements of atmospheric aerosol characteristics,” Atmos. Ocean. Opt. 15 (12), 1015–1019 (2002).
Google Scholar
S. V. Afonin, V. V. Belov, M. V. Panchenko, S. M. Sakerin, and M. V. Engel’, “Correlation analysis of spatial fields of the aerosol optical thickness on the base of MODIS data,” Atmos. Ocean. Opt. 21 (6), 443–447 (2008).
Google Scholar
O. E. Garcıa, A. M. Dıaz, F. J. Exposito, J. P. Dıaz, O. Dubovik, P. Dubuisson, J.-C. Roger, T. F. Eck, A. Sinyuk, Y. Derimian, E. G. Dutton, J. S. Schafer, B. N. Holben, and C. A. Garcıa, “Validation of AERON-ET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements,” J. Geophys. Res. 113 (D21207) (2008). https://doi.org/10.1029/2008JD010211
O. E. Garcıa, J. P. Dıaz, F. J. Exposito, A. M. Dıaz, O. Dubovik, Y. Derimian, P. Dubuisson, and J.‑C. Roger, “Shortwave radiative forcing and efficiency of key aerosol types using AERONET data,” Atmos. Chem. Phys. 12, 5129–5145 (2012).
Article
ADS
Google Scholar
T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech 10, 179–198 (2017).
Article
Google Scholar
Y. Derimian, O. Dubovik, X. Huang, T. Lapyonok, P. Litvinov, A. B. Kostinski, P. Dubuisson, and F. Ducos, “Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics,” Atmos. Chem. Phys. 16, 5763–5780 (2016).
Article
ADS
Google Scholar
J. Lee, J. Kim, C. Song, S. Kim, Y. Chun, B. Sohn, and B. Holben, “Characteristics of aerosol types from AERONET sunphotometer measurements,” Atmos. Environ. 44, 3110–3117 (2010).
Article
ADS
Google Scholar
P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10, 1155–1169 (2010).
Article
ADS
Google Scholar
D. M. Giles, B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. Dickerson, A. Thompson, and J. Schafer, “An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions,” J. Geophys. Res. 117 (D17203) (2012).
S.-K. Shin, M. Tesche, Y. Noh, and D. Muller, “Aerosol-type classification based on AERONET Version 3 inversion products,” Atmos. Meas. Tech 12, 3789–3803 (2019).
Article
Google Scholar
O. Dubovik and M. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105 (D16), 20673–20696 (2000).
Article
ADS
Google Scholar
O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111 (D11208) (2006). https://doi.org/10.1029/2005JD006619
A. Sinyuk, B. N. Holben, T. F. Eck, D. M. Giles, I. Slutsker, S. Korkin, J. S. Schafer, A. Smirnov, M. Sorokin, and A. Lyapustin, “The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2,” Atmos. Meas. Tech. 13, 3375–3411 (2020).
Article
Google Scholar
B. N. Holben, T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik, “AERONET’s Version 2.0 quality assurance criteria,” Proc. SPIE—Int. Soc. Opt. Eng. 6408 (2006). https://doi.org/10.1117/12.706524
A. Smirnov, T. B. Zhuravleva, M. Segal-Rosenheimer, and B. N. Holben, “Limitations of AERONET SDA product in presence of cirrus clouds,” J. Quant. Spectrosc. Radiat. Transf. 206, 338–341 (2018).
Article
ADS
Google Scholar
D. P. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18 (15), 3021–3031 (2005).
Article
ADS
Google Scholar
K. Sassen, Z. Wang, and D. Liu, “Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements,” J. Geophys. Res. D 113 (2008). https://doi.org/10.1029/2008JD009972
I. P. Mazin and S. M. Shmeter, Clouds. Structure and Physics of Formation (Gidrometeoizdat, Leningrad, 1983) [in Russian].
Google Scholar
B. A. Baum, A. J. Heymsfield, P. Yang, and S. T. Bedka, “Bulk scattering models for the remote sensing of ice clouds. Part 1: Microphysical data and models,” J. Appl. Meteorol. 44 (2005).
A. J. Heymsfield, C. Schmitt, and A. Bansemer, “Ice cloud particle size distributions and pressure dependent terminal velocities from in situ observations at temperatures from 0° to –86°C,” J. Atmos. Sci. 70, 4123–4154 (2013).
Article
ADS
Google Scholar
A. M. Fridlind, R. Atlas, B. van Diedenhoven, J. Um, G. M. McFarquhar, A. S. Ackerman, E. J. Moyer, and R. P. Lawso, “Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model,” Atmos. Chem. Phys. 16, 7251–7283 (2016).
Article
ADS
Google Scholar
E. Kienast-Sjogren, C. Rolf, P. Seifert, U. K. Krieger, B. P. Luo, M. Kramer, and T. Peter, “Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements,” Atmos. Chem. Phys. 16, 7605–7621 (2016).
Article
ADS
Google Scholar
M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
Article
ADS
Google Scholar
B. A. Baum, P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y.-X. Hu, and S. T. Bedka, “Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models,” J. Appl. Meteorol. 44 (12), 1896–1911 (2005).
Article
ADS
Google Scholar
B. A. Baum, P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y. X. Hu, and Z. Zhang, “Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds,” J. Appl. Meteorol. Clim 50 (5), 1037–1056 (2011).
Article
ADS
Google Scholar
B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiant. Transfer. 146, 123–139 (2014).
Article
ADS
Google Scholar
T. B. Zhuravleva, ”Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2), 81–95 (2008).
Google Scholar
T. B. Zhuravleva, I. M. Nasrtdinov, T. V. Russkova, and T. Yu. Chesnokova, “Mathematical simulation of brightness fields in broken clouds for observations from Earth’s surface and from space in plane and spherical atmospheric models,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 1003502 (2016).
M. A. Nazaraliev, Statistical Simulation of Radiation Processes in the Atmosphere (Nauka, Novosibirsk, 1990) [in Russian].
MATH
Google Scholar
F. X. Kneizys, D. S. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shetle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, Hanscom AFB, MA 01731-3010, 1996).
S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library [Electron resource] (1998). Dedicated CD-ROM. Version 1.2.
M. Shiobara and S. Asano, “Estimation of cirrus optical thickness from sun-photometer measurements,” J. Appl. Meteorol. 33 (6), 672–681 (1994).
Article
ADS
Google Scholar
M. Segal-Rosenheimer, P. B. Russell, J. M. Livingston, S. Ramachandran, J. Redemann, and B. A. Baum, “Retrieval of cirrus properties by sun photometry: A new perspective on an old issue,” J. Geophys. Res.: Atmos. 118, 4503–4520 (2013).
Article
ADS
Google Scholar