Skip to main content

Height of the Region of Intense Turbulent Heat Exchange in a Stably Stratified Atmospheric Boundary Layer: Part 1–Evaluation Technique and Statistics

Abstract

The height of the region of intense turbulent heat exchange in the atmospheric boundary layer is analyzed based on experimental data obtained using acoustic meteorological locators (sodars), temperature profilers, and ultrasonic anemometer-thermometers. The main aim of the work is to study the turbulent heat exchange under conditions of temperature inversions in winter. Results obtained in a territory with a natural landscape and in an urbanized territory in January–February 2020 are considered. In the first part of the paper, the technique for experimental data acquisition and statistics of temperature inversions in the boundary layer and heights of the layer of intense turbulent heat exchange are described.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. S. S. Zilitinkevich, S. A. Tyuryakov, Yu. I. Troitskaya, and E. A. Mareev, “Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary,” Izv., Atmos. Ocean. Phys. 48 (1), 133–142 (2012).

    Article  Google Scholar 

  2. C. Dai, Q. Wang, J. A. Kalogiros, D. H. Lenschow, Z. Gao, and M. Zhou, “Determining boundary-layer height from aircraft measurements,” Bound.-Lay. Meteorol. 152 (3), 277–302 (2014).

    Article  ADS  Google Scholar 

  3. A. F. Kurbatskii and L. I. Kurbatskaya, “Investigation of a stable boundary layer using an explicit algebraic model of turbulence,” Thermophys. Aeromechanics 26 (3), 335–350 (2019).

    Article  ADS  Google Scholar 

  4. A. M. Holdsworth and A. H. Monahan, “Turbulent collapse and recover in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget,” J. Atmos. Sci. 76 (5), 1307–1327 (2019).

    Article  ADS  Google Scholar 

  5. A. Yu. Shikhovtsev, A. V. Kiselev, P. G. Kovadlo, D. Yu. Kolobov, V. P. Lukin, and V. E. Tomin, “Method for estimating the altitudes of atmospheric layers with strong turbulence,” Atmos. Oceanic Opt. 33 (3), 295–301 (2020).

    Article  Google Scholar 

  6. A. Yu. Shikhovtsev, P. G. Kovadlo, L. A. Bol’basova, and V. P. Lukin, “Features of the formation of wavefront slopes on the telescope aperture at different vertical profiles of optical atmospheric turbulence,” Atmos. Ocean. Opt. 33 (2), 141–145 (2020).

    Article  Google Scholar 

  7. V. P. Aksenov, V. V. Dudorov, and V. V. Kolosov, “Singular atmospheric optics: From wavefront dislocations to synthesis of vortex laser beams,” Atmos. Ocean. Opt. 33 (1), 109–115 (2020).

    Article  Google Scholar 

  8. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, and I. V. Nevzorova, “Determination of the structure characteristic of refractive index of optical waves in the atmospheric boundary layer with remote acoustic sounding facilities,” Atmos. 10 (11), 711 (2019).

    Article  ADS  Google Scholar 

  9. G. Casasanta, I. Pietroni, I. Petenko, and S. Argentini, “Observed and modeled convective mixing-layer height at Dome C, Antarctica,” Bound.-Lay. Meteorol. 151 (3), 597–609 (2014).

    Article  ADS  Google Scholar 

  10. I. Petenko, S. Argentini, G. Casasanta, C. Genthon, and M. Kallistratova, “Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in situ observations,” Bound.-Lay. Meteorol. 171 (1), 101–128 (2019).

    Article  ADS  Google Scholar 

  11. S. J. A. Van der Linden, J. M. Edwards, Ch. C. Van Heerwaarden, E. Vignon, C. Genthon, I. Petenko, P. Baas, H. J. J. Jonker, and B. J. H. Van de Wiel, “Large-eddy simulations of the steady wintertime Antarctic boundary layer,” Bound.-Lay. Meteorol. 173 (2), 165–192 (2019).

    Article  ADS  Google Scholar 

  12. P. Kokkalis, D. Alexiou, A. Papayannis, F. Rocadenbosch, O. Soupiona, P.-I. Raptis, M. Mylonaki, C. G. Tzanis, and J. Christodoulakis, “Application and testing of the extended-Kalman-filtering technique for determining the planetary boundary-layer height over Athens, Greece,” Bound.-Lay. Meteorol. 176 (1), 125–147 (2020).

    Article  ADS  Google Scholar 

  13. G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, and S. B. Belan, “Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 30 (1), 18–32 (2017).

    Article  Google Scholar 

  14. M. Huang, Z. Gao, S. Miao, F. Chen, M. A. LeMone, J. Li, F. Hu, and L. Wang, “Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015,” Bound.-Lay. Meteorol. 162 (3), 503–522 (2017).

    Article  ADS  Google Scholar 

  15. A. P. Kamardin, G. P. Kokhanenko, I. V. Nevzorova, and I. E. Penner, “Joint lidar and sodar investigations of the atmospheric boundary layers,” Opt. Atmos. Okeana 24 (6), 534–537 (2011).

    Google Scholar 

  16. B. L. Hemingway, A. E. Frazier, B. R. Elbing, and J. D. Jacob, “High-resolution estimation and spatial interpolation of temperature structure in the atmospheric boundary layer using a small unmanned aircraft system,” Bound.-Lay. Meteorol. 175 (3), 397–416 (2020).

    Article  ADS  Google Scholar 

  17. L. Baserud, J. Reuder, M. O. Jonassen, T. A. Bonin, P. B. Chilson, M. A. Jimenez, and P. Durand, “Potential and limitations in estimating sensible-heat-flux profiles from consecutive temperature profiles using remotely-piloted aircraft systems,” Bound.-Lay. Meteorol. 174 (1), 145–177 (2020).

    Article  ADS  Google Scholar 

  18. B. B. Balsley, D. A. Lawrence, D. C. Fritts, L. Wang, K. Wan, and J. Werne, “Fine structure, instabilities, and turbulence in the lower atmosphere: High-resolution in situ slant-path measurements with the DataHawk UAV and comparisons with numerical modeling,” J. Atmos. Ocean. Technol. 35 (3), 619–642 (2018).

    Article  ADS  Google Scholar 

  19. V. Danchovski, “Summertime urban mixing layer height over Sofia, Bulgaria,” Atmos. 10 (1) (2019). https://doi.org/10.3390/atmos10010036

  20. A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Meteorological acoustic Doppler radar (sodar) "Volna-4M-ST”,” Pribory, No. 4, 37–44 (2017).

    Google Scholar 

  21. E. N. Kadygrov and I. N. Kuznetsova, Methodical Recommendations on the Use of Remote Microwave Profiler Measurements of Temperature Profiles in the Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].

  22. E. N. Kadygrov, “Microwave radiometry of atmospheric boundary layer: method, equipment, and applications,” Opt. Atmos. Okeana 22 (7), 697–704 (2009).

    Google Scholar 

  23. V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7, 21–25 (2009).

    Google Scholar 

  24. A. P. Kamardin and S. L. Odintsov, “Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements,” Atmos. Ocean. Opt. 30 (1), 33–38 (2017).

    Article  Google Scholar 

  25. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters,” Atmos. Ocean. Opt. 31 (6), 553–563 (2018).

    Article  Google Scholar 

  26. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967 [in Russian].

    Google Scholar 

  27. V. A. Gladkikh, I. V. Nevzorova, and S. L. Odintsov, “Statistics of outer turbulence scales in the surface air layer,” Atmos. Ocean. Opt. 32 (4), 450–458 (2019).

    Article  Google Scholar 

  28. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 1, Refractive index,” Atmos. Ocean. Opt. 31 (5), 437–444 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental data were obtained using the instrumentation of the Atmosfera common use center of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences.

Funding

Atmosphere characteristics were measured under the financial support of the Russian Science Foundation (project no. 19-71-20042). The development of methodical aspects of the study was supported by the Ministry of Science and Higher Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Odintsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S.L., Gladkikh, V.A., Kamardin, A.P. et al. Height of the Region of Intense Turbulent Heat Exchange in a Stably Stratified Atmospheric Boundary Layer: Part 1–Evaluation Technique and Statistics. Atmos Ocean Opt 34, 34–44 (2021). https://doi.org/10.1134/S1024856021010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021010097

Keywords:

  • temperature inversion
  • atmospheric boundary layer
  • sodar
  • temperature profiler
  • turbulent heat exchange
  • ultrasonic anemometer-thermometer