S. S. Zilitinkevich, S. A. Tyuryakov, Yu. I. Troitskaya, and E. A. Mareev, “Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary,” Izv., Atmos. Ocean. Phys. 48 (1), 133–142 (2012).
Article
Google Scholar
C. Dai, Q. Wang, J. A. Kalogiros, D. H. Lenschow, Z. Gao, and M. Zhou, “Determining boundary-layer height from aircraft measurements,” Bound.-Lay. Meteorol. 152 (3), 277–302 (2014).
Article
ADS
Google Scholar
A. F. Kurbatskii and L. I. Kurbatskaya, “Investigation of a stable boundary layer using an explicit algebraic model of turbulence,” Thermophys. Aeromechanics 26 (3), 335–350 (2019).
Article
ADS
Google Scholar
A. M. Holdsworth and A. H. Monahan, “Turbulent collapse and recover in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget,” J. Atmos. Sci. 76 (5), 1307–1327 (2019).
Article
ADS
Google Scholar
A. Yu. Shikhovtsev, A. V. Kiselev, P. G. Kovadlo, D. Yu. Kolobov, V. P. Lukin, and V. E. Tomin, “Method for estimating the altitudes of atmospheric layers with strong turbulence,” Atmos. Oceanic Opt. 33 (3), 295–301 (2020).
Article
Google Scholar
A. Yu. Shikhovtsev, P. G. Kovadlo, L. A. Bol’basova, and V. P. Lukin, “Features of the formation of wavefront slopes on the telescope aperture at different vertical profiles of optical atmospheric turbulence,” Atmos. Ocean. Opt. 33 (2), 141–145 (2020).
Article
Google Scholar
V. P. Aksenov, V. V. Dudorov, and V. V. Kolosov, “Singular atmospheric optics: From wavefront dislocations to synthesis of vortex laser beams,” Atmos. Ocean. Opt. 33 (1), 109–115 (2020).
Article
Google Scholar
S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, and I. V. Nevzorova, “Determination of the structure characteristic of refractive index of optical waves in the atmospheric boundary layer with remote acoustic sounding facilities,” Atmos. 10 (11), 711 (2019).
Article
ADS
Google Scholar
G. Casasanta, I. Pietroni, I. Petenko, and S. Argentini, “Observed and modeled convective mixing-layer height at Dome C, Antarctica,” Bound.-Lay. Meteorol. 151 (3), 597–609 (2014).
Article
ADS
Google Scholar
I. Petenko, S. Argentini, G. Casasanta, C. Genthon, and M. Kallistratova, “Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in situ observations,” Bound.-Lay. Meteorol. 171 (1), 101–128 (2019).
Article
ADS
Google Scholar
S. J. A. Van der Linden, J. M. Edwards, Ch. C. Van Heerwaarden, E. Vignon, C. Genthon, I. Petenko, P. Baas, H. J. J. Jonker, and B. J. H. Van de Wiel, “Large-eddy simulations of the steady wintertime Antarctic boundary layer,” Bound.-Lay. Meteorol. 173 (2), 165–192 (2019).
Article
ADS
Google Scholar
P. Kokkalis, D. Alexiou, A. Papayannis, F. Rocadenbosch, O. Soupiona, P.-I. Raptis, M. Mylonaki, C. G. Tzanis, and J. Christodoulakis, “Application and testing of the extended-Kalman-filtering technique for determining the planetary boundary-layer height over Athens, Greece,” Bound.-Lay. Meteorol. 176 (1), 125–147 (2020).
Article
ADS
Google Scholar
G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, and S. B. Belan, “Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 30 (1), 18–32 (2017).
Article
Google Scholar
M. Huang, Z. Gao, S. Miao, F. Chen, M. A. LeMone, J. Li, F. Hu, and L. Wang, “Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015,” Bound.-Lay. Meteorol. 162 (3), 503–522 (2017).
Article
ADS
Google Scholar
A. P. Kamardin, G. P. Kokhanenko, I. V. Nevzorova, and I. E. Penner, “Joint lidar and sodar investigations of the atmospheric boundary layers,” Opt. Atmos. Okeana 24 (6), 534–537 (2011).
Google Scholar
B. L. Hemingway, A. E. Frazier, B. R. Elbing, and J. D. Jacob, “High-resolution estimation and spatial interpolation of temperature structure in the atmospheric boundary layer using a small unmanned aircraft system,” Bound.-Lay. Meteorol. 175 (3), 397–416 (2020).
Article
ADS
Google Scholar
L. Baserud, J. Reuder, M. O. Jonassen, T. A. Bonin, P. B. Chilson, M. A. Jimenez, and P. Durand, “Potential and limitations in estimating sensible-heat-flux profiles from consecutive temperature profiles using remotely-piloted aircraft systems,” Bound.-Lay. Meteorol. 174 (1), 145–177 (2020).
Article
ADS
Google Scholar
B. B. Balsley, D. A. Lawrence, D. C. Fritts, L. Wang, K. Wan, and J. Werne, “Fine structure, instabilities, and turbulence in the lower atmosphere: High-resolution in situ slant-path measurements with the DataHawk UAV and comparisons with numerical modeling,” J. Atmos. Ocean. Technol. 35 (3), 619–642 (2018).
Article
ADS
Google Scholar
V. Danchovski, “Summertime urban mixing layer height over Sofia, Bulgaria,” Atmos. 10 (1) (2019). https://doi.org/10.3390/atmos10010036
A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Meteorological acoustic Doppler radar (sodar) "Volna-4M-ST”,” Pribory, No. 4, 37–44 (2017).
Google Scholar
E. N. Kadygrov and I. N. Kuznetsova, Methodical Recommendations on the Use of Remote Microwave Profiler Measurements of Temperature Profiles in the Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].
E. N. Kadygrov, “Microwave radiometry of atmospheric boundary layer: method, equipment, and applications,” Opt. Atmos. Okeana 22 (7), 697–704 (2009).
Google Scholar
V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7, 21–25 (2009).
Google Scholar
A. P. Kamardin and S. L. Odintsov, “Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements,” Atmos. Ocean. Opt. 30 (1), 33–38 (2017).
Article
Google Scholar
S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters,” Atmos. Ocean. Opt. 31 (6), 553–563 (2018).
Article
Google Scholar
V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967 [in Russian].
Google Scholar
V. A. Gladkikh, I. V. Nevzorova, and S. L. Odintsov, “Statistics of outer turbulence scales in the surface air layer,” Atmos. Ocean. Opt. 32 (4), 450–458 (2019).
Article
Google Scholar
S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 1, Refractive index,” Atmos. Ocean. Opt. 31 (5), 437–444 (2018).
Article
Google Scholar