Skip to main content

Black Carbon in the Near-Surface Atmosphere Far Away from Emission Sources: Comparison of Measurements and MERRA-2 Reanalysis Data

Abstract

We compare the time variations in monthly average concentrations of black carbon in the surface air layer obtained from field measurements ([BC]) and from MERRA-2 reanalysis ([BC]M) at four monitoring sites located in the northern part of Russia (Tiksi Observatory, Pechora-Ilych Biosphere Reserve), Alaska (Barrow station), and Greenland (Summit station). It is shown that the MERRA-2 reanalysis data for the regions of Tiksi and Barrow do not completely reflect the [BC] variations during the year, in contrast to the Pechora-Ilych Biosphere Reserve, where the discrepancies are within 30–50%. The [BC]M reanalysis products for the Summit monitoring site qualitatively agree with the measurements characterizing the BC content in the free troposphere, but they underestimate [BC] by more than a factor of two. On the whole, our analysis showed that the results of the MERRA-2 reanalysis of the monthly average indices of near-surface concentration of atmospheric black carbon can be used for climate assessments for hard-to-reach northern regions in the warm season with an error of about 30%. Possible causes for the discrepancies between [BC] and [BC]M are discussed for different times of the year and observation sites.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    J. Zhang, J. S. Reid, D. L. Westphal, N. L. Baker, and E. J. Hyer, “A system for operational aerosol optical depth data assimilation over global oceans,” J. Geophys. Res. 113 (2008).https://doi.org/10.1029/2007JD009065

  2. 2

    A. Benedetti, J.-J. Morsette, O. Boucher, A. Dethof, R. J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J. W. Kaiser, S. Kinne, A. Mangold, M. Razinger, A. J. Simmons, and M. Suttie, “Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation,” J. Geophys. Res. 114 (2009).https://doi.org/10.1029/2008JD011115

  3. 3

    P. Lynch, J. S. Reid, D. L. Westphal, J. Zhang, T. F. Hogan, J. H. Edward, C. A. Curtis, D. A. Hegg, Y. Shi, J. R. Campbell, J. I. Rubin, W. R. Sessions, F. J. Turk, and A. L. Walker, “An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences,” Geosci. Model Dev. 9 (4), 1489–1522 (2016).

    ADS  Article  Google Scholar 

  4. 4

    Z. Li, Z. Zang, Q. B. Li, Y. Chao, D. Chen, Z. Ye, Y. Liu, and K. N. Liou, “A three-dimensional variational data assimilation system for multiple aerosol species with WRF-Chem and an application to PM2.5 prediction,” Atmos. Chem. Phys. 13 (8), 4265–4278 (2013).

    ADS  Article  Google Scholar 

  5. 5

    P. E. Saide, J. Kim, C. H. Song, M. Choi, Y. Cheng, and G. R. Carmichael, “Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations,” Geophys. Rev. Lett. 41 (24), 9188–9196 (2014).

    ADS  Article  Google Scholar 

  6. 6

    R. Gelaro, W. McCarty, M. J. Suarez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao, “The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),” J. Clim. 30 (14), 5419–5454 (2017).

    ADS  Article  Google Scholar 

  7. 7

    C. A. Randles, A. M. Silva, V. Buchard, A. Darmenov, P. R. Colarco, V. Aquila, H. Bian, E. P. Nowottnick, X. Pan, A. Smirnov, H. Yu, and R. Govindaraju, The MERRA-2 Aerosol Assimilation. NASA/TM-2016-104606/V. 45 (NASA, Goddard Space Flight Center, Greenbelt, Maryland, 2016). https://gmao.gsfc.nasa. gov/pubs/docs/Randles887.pdf. Cited October 28, 2020.

  8. 8

    C. A. Randles, A. M. Silva, V. Buchard, P. R. Colarco, A. Darmenov, R. Govindaraju, A. Smirnov, B. Holben, R. Ferrare, J. Hair, Y. Shinozuka, and C. J. Flynn, “The MERRA-2 aerosol reanalysis, 1980 onward, Part I: System description and data assimilation evaluation,” J. Clim. 30 (17), 6823–6850 (2017).

    ADS  Article  Google Scholar 

  9. 9

    V. Buchard, C. A. Randles, A. M. Silva, A. Darmenov, P. R. Colarco, R. Govindaraju, R. Ferrare, J. Hair, A. J. Beyersdorf, L. D. Ziemba, and H. Yu, “The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies,” J. Clim. 30 (17), 6851–6872 (2017).

    ADS  Article  Google Scholar 

  10. 10

    M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements,” J. Atmos. Sci. 59 (3), 461–483 (2002).

    ADS  Article  Google Scholar 

  11. 11

    P. Colarco, A. Silva, M. Chin, and T. Diehl, “Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth,” J. Geophys. Res. 115 (2010). https://doi.org/10.1029/2009JD012820

  12. 12

    M. P. Hess and Koepke S.I., “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).

    ADS  Article  Google Scholar 

  13. 13

    S. C. Wofsy, “HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols,” Phil. Trans. R. Soc. A. 369, 2073–2086 (2011). https://doi.org/10.1098/rsta.2010.0313

    ADS  Article  Google Scholar 

  14. 14

    D. J. Jacob, J. H. Crawford, H. Maring, A. D. Clarke, J. E. Dibb, L. K. Emmons, R. A. Ferrare, C. A. Hostetler, P. B. Russell, H. B. Singh, A. M. Thompson, G. E. Shaw, E. McCauley, J. R. Pederson, and J. A. Fisher, “The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: Design, execution, and first results,” Atmos. Chem. Phys. 10 (11), 5191–5212 (2010).

    ADS  Article  Google Scholar 

  15. 15

    L. Schmeisser, J. Backman, J. A. Ogren, E. Andrews, E. Asmi, S. Starkweather, T. Uttal, M. Fiebig, S. Sharma, K. Eleftheriadis, S. Vratolis, M. Bergin, P. Tunved, and A. Jefferson, “Seasonality of aerosol optical properties in the Arctic,” Atmos. Chem. Phys. 18 (16), 11599–11622 (2018).

    ADS  Article  Google Scholar 

  16. 16

    A. A. Vinogradova, V. M. Kopeikin, N. S. Smirnov, A. V. Vasileva, and Yu. A. Ivanova, “Black carbon in near-surface air in Pechora-Ilych nature reserve: Measurements and sources,” Atmos. Ocean. Opt. 32 (5), 521–527 (2019).

    Article  Google Scholar 

  17. 17

    S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, D. A. Kalashnikova, V. S. Kozlov, I. A. Kruglinskii, V. I. Makarov, A. P. Makshtas, S. A. Popova, V. F. Radionov, G. V. Simonova, Yu. S. Turchinovich, T. V. Khodzher, O. I. Khuriganova, O. V. Chankina, and D. G. Chernov, “Measurements of physicochemical characteristics of atmospheric aerosol at research station Ice Base Cape Baranov in 2018,” Atmos. Ocean. Opt. 32 (5), 511–520 (2019).

    Article  Google Scholar 

  18. 18

    D. G. Chernov, V. S. Kozlov, M. V. Panchenko, Yu. S. Turchinovich, V. F. Radionov, A. B. Gubin, and A. N. Prakhov, “Features of variability of aerosol and black carbon concentration in the surface air in Barentsburg (Spitsbergen) in 2011–2013,” Problemy Arktiki Antarktiki. No. 4, 34–44 (2014).

    Google Scholar 

  19. 19

    O. B. Popovicheva, N. Evangeliou, K. Eleftheriadis, A. C. Kalogridis, N. Sitnikov, S. Eckhardt, and A. Stohl, “Black carbon sources constrained by observations in the Russian High Arctic,” Environ. Sci. Technol. 51 (7), 3871–3879 (2017).

    ADS  Article  Google Scholar 

  20. 20

    O. Popovicheva, E. Diapouli, A. Makshtas, N. Shonija, M. Manousakas, D. Saraga, T. Uttal, and K. Eleftheriadis, “East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi,” Sci. Total Environ. 655, 924–938 (2019).

    ADS  Article  Google Scholar 

  21. 21

    S. M. Sakerin, D. M. Kabanov, V. V. Pol’kin, L. P. Golobokova, P. N. Zenkova, A. S. Kessel, Vas. V. Pol’kin, V. F. Radionov, S. A. Terpugova, A. V. Urazgildeeva, T. V. Khodzher, and O. I. Khuriganowa, “Features of spatial distribution of aerosol characteristics over Arctic seas,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (39) (2018). https://doi.org/10.1117/12.2502013

  22. 22

    D. V. Kirin, N. O. Krutikov, A. N. Luk’yanov, A. M. Strunin, and M. A. Strunin, “Results of the comparative analysis of atmospheric aerosols in the Arctic and Moscow region from aircraft studies in 2014–2015,” Tr. Voenno-Kosmicheskoi Akademii imeni A.F. Mozhaiskogo. Is. 662, 219–223 (2018).

    Google Scholar 

  23. 23

    S. Sharma, M. Ishizawa, D. Chan, D. Lavoue, E. Andrews, K. Eleftheriadis, and S. Maksyutov, “16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition,” J. Geophys. Res.: Atmos. 118 (1), 943–964 (2013).

    ADS  Article  Google Scholar 

  24. 24

    D. Hirdman, J. F. Burkhart, H. Sodemann, S. Eckhardt, A. Jefferson, P. K. Quinn, S. Sharma, J. Strom, and A. Stoh, “Long-term trends of black carbon and sulphate aerosol in the Arctic: Changes in atmospheric transport and source region emissions,” Atmos. Chem. Phys. 10 (19), 9351–9368 (2010).

    ADS  Article  Google Scholar 

  25. 25

    P. K. Quinn, G. Shaw, E. Andrews, E. Dutton, T. Ruoho-Airola, and S. Gong, “Arctic haze: Current trends and knowledge gaps,” Tellus V 59 (1), 99–114 (2007).

    ADS  Article  Google Scholar 

  26. 26

    A. Stohl, Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky, “Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions,” Atmos. Chem. Phys. 13 (17), 8833–8855 (2013).

    ADS  Article  Google Scholar 

  27. 27

    N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbansk, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nojgaard, and H. Skov, “Wildfires in northern Eurasia affect the budget of black carbon in the Arctic—a 12-year retrospective synopsis (2002–2013),” Atmos. Chem. Phys. 16, 7587–7604 (2016).

    ADS  Article  Google Scholar 

  28. 28

    J. Lisok, A. Rozwadowska, J. G. Pedersen, K. M. Markowicz, C. Ritter, J. W. Kaminski, J. Struzewska, M. Mazzola, R. Udisti, S. Becagli, and I. Gorecka, “Radiative impact of an extreme Arctic biomass-burning event,” Atmos. Chem. Phys. 18 (12), 8829–8848 (2018).

    ADS  Article  Google Scholar 

  29. 29

    R. Stone, G. Anderson, E. Shettle, E. Andrews, K. Loukachine, E. Dutton, C. Schaaf, and M. Roman, “Radiative impact of boreal smoke in the Arctic: Observed and modeled,” J. Geophys. Res.: Atmos. 13 (D14), D14S16 (2008). https://doi.org/10.1029/2007JD009657

    ADS  Article  Google Scholar 

  30. 30

    A. A. Vinogradova, V. M. Kopeikin, and N. S. Smirnov, “Monitoring of black carbon concentration in near surface air in the Pechora-Ilych biosphere reserve,” Uspekhi Sovremennogo Estestvoznaniya. No. 11, 64–69 (2019).

    Google Scholar 

  31. 31

    E. Asmi, V. Kondratyev, D. Brus, T. Laurila, H. Lihavainen, J. Backman, V. Vakkari, M. Aurela, J. Hatakka, Y. Viisanen, T. Uttal, V. Ivakhov, and A. Makshtas, “Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic,” Atmos. Chem. Phys. 16 (3), 1271–1287 (2016).

    ADS  Article  Google Scholar 

  32. 32

    A. A. Vinogradova, T. B. Titkova, and Yu. A. Ivanova, “Episodes with anomalously high black carbon concentration in surface air in the region of Tiksi station, Yakutiya,” Atmos. Ocean. Opt. 32 (1), 94–102 (2019).

    Article  Google Scholar 

  33. 33

    A. A. Vinogradova and A. V. Vasileva, “Black carbon in air over Northern Regions of Russia: Sources and spatiotemporal variations,” Atmos. Ocean. Opt. 30 (6), 533–541 (2017).

    Article  Google Scholar 

  34. 34

    A. A. Vinogradova, T. B. Titkova, A. V. Vasileva, and Yu. A. Ivanova, “Effect of summer wildfires in Russia on the black carbon content in the atmosphere over the Eurasian Arctic coast,” in Abstracts of International Symposium “Atmospheric Radiation and Dynamics (ISARD-2019), June 24–27, 2019, Saint-Petersburg, Petrodvorets (Saint-Petersburg, 2019), p. 134–135 [in Russian]. http://www.rrc.phys.spbu.ru/msard19/thesis.pdf. Cited November 30, 2019.

  35. 35

    Jun-Wei. Xu, R. V. Martin, A. Morrow, S. Sharma, L. Huang, W. R. Leaitch, J. Burkart, H. Schulz, M. Zanatta, M. D. Willis, D. K. Henze, C. J. Lee, A. B. Herber, and J. P. D. Abbatt, “Source attribution of Arctic black carbon constrained by aircraft and surface measurements,” Atmos. Chem. Phys. 17, 11971–11989 (2017). https://doi.org/10.5194/acp-17-11971-2017

    ADS  Article  Google Scholar 

  36. 36

    J. E. Dibb, “Vertical mixing above Summit, Greenland: Insights into seasonal and high frequency variability from the radionuclide tracers 7Be and 210Pb,” Atmos. Environ. 41, 5020–5030 (2007). https://doi.org/10.1016/jatmosenv.2006.12.005

    ADS  Article  Google Scholar 

  37. 37

    A. Stohl, “Characteristics of atmospheric transport into the Arctic troposphere,” J. Geophys. Res. 111 (2006). https://doi.org/10.1029/005JD006888

  38. 38

    N. Evangeliou, A. Kylling, S. Eckhardt, V. Myroniuk, K. Stebel, R. Paugam, S. Zibtsev, and A. Stohl, “Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions,” Atmos. Chem. Phys. 19, 1393–1411 (2019). https://doi.org/10.5194/acp-19-1393-2019

    ADS  Article  Google Scholar 

  39. 39

    A. Stohl, T. Berg, J. F. Burkhart, A. M. Fjaeraa, C. Forster, A. Herber, O. Hov, C. Lunder, W. W. McMillan, S. Oltmans, M. Shiobara, D. Simpson, S. Solberg, K. Stebel, J. Strom, K. Torseth, R. Treffeisen, K. Virkkunen, and K. E. Yttri, “Arctic smoke—record high air pollution levels in the European Arctic due to agricultural fires in eastern Europe in spring 2006,” Atmos. Chem. Phys. 7, 511–534 (2007).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the organizers of websites http://giovanni.gsfc.nasa.gov, http://aeronet.gsfc.nasa.gov, and ftp://ftp1.esrl.noaa.gov/psd3/arctic/ for compiling information and providing the possibility for its free use.

Funding

This work was supported in part by the Russian Foundation for Basic Research (grant no. 17-05-00245; preparation of experimental data and, in particular, measurements on the territory of Pechora-Ilych Biosphere Reserve) and carried out within State Assignment (analysis and comparison of measurements and reanalysis products).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. B. Zhuravleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, T.B., Artyushina, A.V., Vinogradova, A.A. et al. Black Carbon in the Near-Surface Atmosphere Far Away from Emission Sources: Comparison of Measurements and MERRA-2 Reanalysis Data. Atmos Ocean Opt 33, 591–601 (2020). https://doi.org/10.1134/S1024856020060251

Download citation

Keywords:

  • black carbon, surface air layer, Arctic
  • ground-based measurements, MERRA-2 reanalysis