P. S. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light Sci. Appl. 8, 110 (2019).
ADS
Article
Google Scholar
L. Xu, Y. Wu, Y. Du, D. Wang, X. An, M. Li, T. Zhou, J. Shang, J. Wang, Z. Liu, L. Ou, N. Zhao, R. Xiang, L. Tong, H. Lin, Q. Gao, Y. Lu, K. Zhang, and C. Tang, “High brightness laser based on Yb:YAG MOPA chain and adaptive optics system at room temperature,” Opt. Express 26, 14592–14600 (2018).
ADS
Article
Google Scholar
F. Yu. Kanev and E. I. Tsyro, “Reconstruction of the three-dimensional refractive index distribution by means of adaptive optics,” Atmos. Ocean. Opt. 23 (5), 426–432 (2010).
Article
Google Scholar
J. Pilar, O. Slezak, P. Sikocinski, M. Divoky, M. Sawicka, S. Bonora, A. Lucianetti, T. Mocek, and H. Jelinkova, “Design and optimization of an adaptive optics system for a High-Average-Power Multi-Slab Laser (HiLASE),” Appl. Opt. 53, 3255–3261 (2014).
ADS
Article
Google Scholar
A. Lylova, Yu. Sheldakova, A. Kudryashov, and V. Samarkin, “Formation of doughnut and super-Gaussian intensity distributions of laser radiation in the far field using a bimorph mirror,” Quantum Electron. 48 (1), 57–61 (2018).
ADS
Article
Google Scholar
A. Kudryashov, A. Alexandrov, A. Rukosuev, V. Samarkin, P. Galarneau, S. Turbide, and F. Chateauneuf, “Extremely high-power CO2 laser beam correction,” Appl. Opt. 54 (14), 4352–4358 (2015).
ADS
Article
Google Scholar
B. Wattellier, J. Fuchs, J.-P. Zou, A. Kudryashov, and A. Aleksandrov, “Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma,” J. Opt. Soc. Am. B 20 (8), 1632–1642 (2003).
ADS
Article
Google Scholar
Yu. Akahane, J. Ma, Yu. Fukuda, M. Aoyama, H. Kiriyama, J. Sheldakova, A. Kudryashov, and K. Yamakawa, “Characterization of wave-front corrected 100 TW, 10 Hz Laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum. 77 (2), 023102 (2006).
ADS
Article
Google Scholar
N. N. Botygina, D. Yu. Kolobov, P. G. Kovadlo, V. P. Lukin, S. A. Chuprakov, and A. Yu. Shikhovtsev, “Two mirror adaptive system for correction of atmospheric disturbances of the large solar vacuum telescope,” Atmos. Ocean. Opt. 31 (6), 709–717 (2018).
Article
Google Scholar
A. L. Rukosuev, A. V. Kudryashov, A. N. Lylova, V. V. Samarkin, and Yu. V. Sheldakova, “Adaptive optics system for real-time wavefront correction,” Atmos. Ocean. Opt. 28 (4), 381–386 (2015).
Article
Google Scholar
S. Barwick, “Least-squares estimation for hybrid curvature wavefront sensors,” Opt. Commun. 284 (8), 2099–2108 (2011).
ADS
Article
Google Scholar
V. Akondi, S. Castillo, and B. Vohnsen, “Digital pyramid wavefront sensor with tunable modulation,” Opt. Express 21 (15), 18261–18272 (2013).
ADS
Article
Google Scholar
A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, Yu. V. Sheldakova, V. V. Samarkin, and P. N. Romanov, “Shack–Hartmann wavefront sensor for measuring the parameters of high-power pulsed solid-state lasers,” Quantum Electron. 40 (4), 321–326 (2010).
ADS
Article
Google Scholar
V. P. Lukin, F. Yu. Kanev, P. A. Konyaev, and B. V. Fortes, “Numerical model of an atmospheric adaptive optical system. II. Wave-front sensors and control elements,” Atmos. Ocean. Opt. 8 (3), 419–428 (1995).
Google Scholar
V. Toporovskiy, A. Kudryashov, V. Samarkin, J. Sheldakova, A. Rukosuev, A. Skvortsov, and D. Pshonkin, “Bimorph deformable mirror with a high density of electrodes to correct for atmospheric distortions,” A-ppl. Opt. 58 (22), 6019–6026 (2019).
ADS
Article
Google Scholar
P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: Design and manufacturing,” Opt. Express 23 (15), 19469–19477 (2015).
ADS
Article
Google Scholar
J. C. Sinquin, J. M. Lurcon, and C. Guilemard, “Deformable mirror technologies for astronomy at CILAS,” Proc. SPIE—Int. Soc. Opt. Eng. 7015, 70150 (2008).
R. H. Freeman and H. R. Garcia, “High-speed deformable mirror system,” Appl. Opt. 21 (4), 589–595 (1982).
ADS
Article
Google Scholar
A. E. Panich, Piesoceramic Actuators (South Federal Univ., Rostov-on-Don, 2008) [in Russian]
Google Scholar
L. A. Bol’basova and V. P. Lukin, “Analytical models of vertical profile of the structure parameter of atmospheric refractive index for adaptive optics,” Optika Atmos. Okeana. 29 (11), 918–925 (2016).
Google Scholar
M. A. Vorontsov and V. I. Shmal’gauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985) [in Russian].
Google Scholar
V. P. Lukin, “Efficiency of some correction systems,” Opt. Lett. 4 (1), 15–17 (1979).
ADS
Article
Google Scholar
L. D. Landau and E. M. Lifshits, Theoretical Physics. Elasticity Theory (Nauka, Moscow, 1987) [in Russian].
Google Scholar
W. C. Young, R. G. Budynas, and A. M. Sadegh, Roark’s Formulas for Stress and Strain (The McGraw-Hill Companies, Inc., 2012).
Google Scholar
O. I. Shanin, Adaptive Optics Systems in High-Power Pulsed Laser Setups (Tekhnosfera, Moscow, 2012) [in Russian].
Google Scholar
Yu. V. Sheldakova, A. V. Kudryashov, A. L. Rukosuev, and T. Yu. Cherezova, “The use of hybrid algorithm controlling bimorph mirror to focus light radiation,” Atmos. Ocean. Opt. 20 (4), 342–344 (2007).
Google Scholar
K. Ahn, H. S. Yang, H. G. Rhee, and H. Kihm, “CVD SiC deformable mirror with monolithic cooling channels,” Opt. Express 26 (8), 9724–9739 (2018).
ADS
Article
Google Scholar
A. Nikitin, J. Sheldakova, A. Kudryashov, G. Borsoni, D. Denisov, V. Karasik, and A. Sakharov, “A device based on the Shack–Hartmann wave front sensor for testing wide aperture optics,” Proc. SPIE—Int. Soc. Opt. Eng. 9754, 97540 (2015).