Skip to main content

Cooled Stacked-Actuator Deformable Mirror for Compensation for Phase Fluctuations in a Turbulent Atmosphere

Abstract—A wavefront corrector has been designed in the form of a cooled stacked-actuator deformable mirror for the correction of aberrations of laser radiation propagating through the turbulent atmosphere. The main parameters of this mirror are theoretically estimated. A technique for cooling the reflecting surface of the wavefront corrector through piezo actuators is suggested and experimentally tested. The main parameters of the deformable mirror are measured: the initial shape of the surface, the response functions of the actuators, the mirror stroke, and the frequency-amplitude characteristic of optical surface.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. P. S. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light Sci. Appl. 8, 110 (2019).

    ADS  Article  Google Scholar 

  2. L. Xu, Y. Wu, Y. Du, D. Wang, X. An, M. Li, T. Zhou, J. Shang, J. Wang, Z. Liu, L. Ou, N. Zhao, R. Xiang, L. Tong, H. Lin, Q. Gao, Y. Lu, K. Zhang, and C. Tang, “High brightness laser based on Yb:YAG MOPA chain and adaptive optics system at room temperature,” Opt. Express 26, 14592–14600 (2018).

    ADS  Article  Google Scholar 

  3. F. Yu. Kanev and E. I. Tsyro, “Reconstruction of the three-dimensional refractive index distribution by means of adaptive optics,” Atmos. Ocean. Opt. 23 (5), 426–432 (2010).

    Article  Google Scholar 

  4. J. Pilar, O. Slezak, P. Sikocinski, M. Divoky, M. Sawicka, S. Bonora, A. Lucianetti, T. Mocek, and H. Jelinkova, “Design and optimization of an adaptive optics system for a High-Average-Power Multi-Slab Laser (HiLASE),” Appl. Opt. 53, 3255–3261 (2014).

    ADS  Article  Google Scholar 

  5. A. Lylova, Yu. Sheldakova, A. Kudryashov, and V. Samarkin, “Formation of doughnut and super-Gaussian intensity distributions of laser radiation in the far field using a bimorph mirror,” Quantum Electron. 48 (1), 57–61 (2018).

    ADS  Article  Google Scholar 

  6. A. Kudryashov, A. Alexandrov, A. Rukosuev, V. Samarkin, P. Galarneau, S. Turbide, and F. Chateauneuf, “Extremely high-power CO2 laser beam correction,” Appl. Opt. 54 (14), 4352–4358 (2015).

    ADS  Article  Google Scholar 

  7. B. Wattellier, J. Fuchs, J.-P. Zou, A. Kudryashov, and A. Aleksandrov, “Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma,” J. Opt. Soc. Am. B 20 (8), 1632–1642 (2003).

    ADS  Article  Google Scholar 

  8. Yu. Akahane, J. Ma, Yu. Fukuda, M. Aoyama, H. Kiriyama, J. Sheldakova, A. Kudryashov, and K. Yamakawa, “Characterization of wave-front corrected 100 TW, 10 Hz Laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum. 77 (2), 023102 (2006).

    ADS  Article  Google Scholar 

  9. N. N. Botygina, D. Yu. Kolobov, P. G. Kovadlo, V. P. Lukin, S. A. Chuprakov, and A. Yu. Shikhovtsev, “Two mirror adaptive system for correction of atmospheric disturbances of the large solar vacuum telescope,” Atmos. Ocean. Opt. 31 (6), 709–717 (2018).

    Article  Google Scholar 

  10. A. L. Rukosuev, A. V. Kudryashov, A. N. Lylova, V. V. Samarkin, and Yu. V. Sheldakova, “Adaptive optics system for real-time wavefront correction,” Atmos. Ocean. Opt. 28 (4), 381–386 (2015).

    Article  Google Scholar 

  11. S. Barwick, “Least-squares estimation for hybrid curvature wavefront sensors,” Opt. Commun. 284 (8), 2099–2108 (2011).

    ADS  Article  Google Scholar 

  12. V. Akondi, S. Castillo, and B. Vohnsen, “Digital pyramid wavefront sensor with tunable modulation,” Opt. Express 21 (15), 18261–18272 (2013).

    ADS  Article  Google Scholar 

  13. A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, Yu. V. Sheldakova, V. V. Samarkin, and P. N. Romanov, “Shack–Hartmann wavefront sensor for measuring the parameters of high-power pulsed solid-state lasers,” Quantum Electron. 40 (4), 321–326 (2010).

    ADS  Article  Google Scholar 

  14. V. P. Lukin, F. Yu. Kanev, P. A. Konyaev, and B. V. Fortes, “Numerical model of an atmospheric adaptive optical system. II. Wave-front sensors and control elements,” Atmos. Ocean. Opt. 8 (3), 419–428 (1995).

    Google Scholar 

  15. V. Toporovskiy, A. Kudryashov, V. Samarkin, J. Sheldakova, A. Rukosuev, A. Skvortsov, and D. Pshonkin, “Bimorph deformable mirror with a high density of electrodes to correct for atmospheric distortions,” A-ppl. Opt. 58 (22), 6019–6026 (2019).

    ADS  Article  Google Scholar 

  16. P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: Design and manufacturing,” Opt. Express 23 (15), 19469–19477 (2015).

    ADS  Article  Google Scholar 

  17. J. C. Sinquin, J. M. Lurcon, and C. Guilemard, “Deformable mirror technologies for astronomy at CILAS,” Proc. SPIE—Int. Soc. Opt. Eng. 7015, 70150 (2008).

  18. R. H. Freeman and H. R. Garcia, “High-speed deformable mirror system,” Appl. Opt. 21 (4), 589–595 (1982).

    ADS  Article  Google Scholar 

  19. A. E. Panich, Piesoceramic Actuators (South Federal Univ., Rostov-on-Don, 2008) [in Russian]

    Google Scholar 

  20. L. A. Bol’basova and V. P. Lukin, “Analytical models of vertical profile of the structure parameter of atmospheric refractive index for adaptive optics,” Optika Atmos. Okeana. 29 (11), 918–925 (2016).

    Google Scholar 

  21. M. A. Vorontsov and V. I. Shmal’gauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  22. V. P. Lukin, “Efficiency of some correction systems,” Opt. Lett. 4 (1), 15–17 (1979).

    ADS  Article  Google Scholar 

  23. L. D. Landau and E. M. Lifshits, Theoretical Physics. Elasticity Theory (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  24. W. C. Young, R. G. Budynas, and A. M. Sadegh, Roark’s Formulas for Stress and Strain (The McGraw-Hill Companies, Inc., 2012).

    Google Scholar 

  25. O. I. Shanin, Adaptive Optics Systems in High-Power Pulsed Laser Setups (Tekhnosfera, Moscow, 2012) [in Russian].

    Google Scholar 

  26. Yu. V. Sheldakova, A. V. Kudryashov, A. L. Rukosuev, and T. Yu. Cherezova, “The use of hybrid algorithm controlling bimorph mirror to focus light radiation,” Atmos. Ocean. Opt. 20 (4), 342–344 (2007).

    Google Scholar 

  27. K. Ahn, H. S. Yang, H. G. Rhee, and H. Kihm, “CVD SiC deformable mirror with monolithic cooling channels,” Opt. Express 26 (8), 9724–9739 (2018).

    ADS  Article  Google Scholar 

  28. A. Nikitin, J. Sheldakova, A. Kudryashov, G. Borsoni, D. Denisov, V. Karasik, and A. Sakharov, “A device based on the Shack–Hartmann wave front sensor for testing wide aperture optics,” Proc. SPIE—Int. Soc. Opt. Eng. 9754, 97540 (2015).

Download references


This work was supported by the Russian Science Foundation (grant nos. 19-19-00706 (calculation of actuators), 20-69-46064 (study of thermal deformations of a mirror), and 20-19-00597 (study of the main characteristics of the corrector)).

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Kudryashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toporovsky, V.V., Kudryashov, A.V., Samarkin, V.V. et al. Cooled Stacked-Actuator Deformable Mirror for Compensation for Phase Fluctuations in a Turbulent Atmosphere. Atmos Ocean Opt 33, 584–590 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • adaptive optics
  • wavefront corrector
  • deformable mirror
  • high-power laser radiation