Skip to main content

Numerical Experiments on Forecasting Glaze Phenomena

Abstract

Methods and results of the numerical forecast of glaze phenomena in Central Russia for cold periods of 2003–2018 are presented. Effectiveness of glaze forecasting is compared by two methods: (i) analysis of hydrometeor types and air temperature near the Earth’s surface from the WRF-ARW model and (ii) using the thermobalance model with WRF-ARW model forecasts as initial data. Some advantages of glaze forecasts using the thermobalance model are demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Manual on Codes—International Codes, Vol. I.1, Annex II to the WMO Technical Regulations: Part A—Alphanumeric Codes (WMO, 2019).

    Google Scholar 

  2. S. P. Khromov and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  3. K. G. Rubinshtein, R. Yu. Ignatov, Yu. I. Yusupov, and D. E. Titov, “Heat-balance technique as appied to forecast of overhead power line riming events,” Energiya Edinoi Seti. No. 2, 43–50 (2018).

    Google Scholar 

  4. D. E. Titov, G. G. Ugarov, and A. A. Ustinov, “Analysis of application of models to assess parameters of ice formation on overhead electric power lines,” Power Tech. Eng. 51 (2), 240–246 (2017).

    Article  Google Scholar 

  5. A. Zarnani, P. Musilek, X. Shi, X. Ke, H. He, and R. Greiner, “Learning to predict ice accretion on electric power lines,” J. Eng. Appl. Artif. Intell. 25 (3), 609–617 (2012).

    Article  Google Scholar 

  6. A. T. DeGaetano, B. N. Belcher, and P. L. Spier, “Short-term ice accretion forecasts for electric utilities using the weather research and forecasting model and a modified precipitation-type algorithm,” Weather Forecast 23, 878–853 (2008).

    ADS  Article  Google Scholar 

  7. G. Thompson, “Using the Weather Research and Forecasting (WRF) model to predict ground structural icing,” in Book of IWAIS XIII (Andematt, 2009), p. 2–10.

  8. D. E. Titov, G. G. Ugarov, and A. G. Soshinov, “Monitoring the intensity of ice formation on overhead electric power lines and contact networks,” Power Tech. Eng. 49 (1), 78–82 (2015).

    Article  Google Scholar 

  9. J. Shao, S. J. Laux, B. J. Trainor, and R. E. W. Pettifer, “Nowcasts of temperature and ice on overhead railway transmission wires,” Meteorol. Appl. 10 (2), 123–133 (2003).

    ADS  Article  Google Scholar 

  10. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.-Y. Huang, and W. A. Wang, Description of the Advanced Research WRF Version 3, No. NCAR/TN-475+STR (NCAR, Boulder, USA, 2008). https://doi.org/10.5065/D68S4MVH

    Book  Google Scholar 

  11. E. R. Mansell, C. L. Ziegler and E. C. Bruning, “Simulated electrification of a small thunderstorm with two-moment bulk microphysics,” J. Atmos. Sci. 67, 171–194 (2010).

    ADS  Article  Google Scholar 

  12. NCEP Products Inventory. www.nco.ncep.noaa.gov/ pmb/products/gfs. Cited January 12, 2020.

  13. L.-P. Crevier and Y. Delage, “METRo: A new model for road-condition forecasting in canada,” J. Appl. Meteorol. 40, 2026–2037 (2001).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Yu. Ignatov, K. G. Rubinshtein or Yu. I. Yusupov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ignatov, R.Y., Rubinshtein, K.G. & Yusupov, Y.I. Numerical Experiments on Forecasting Glaze Phenomena. Atmos Ocean Opt 33, 682–689 (2020). https://doi.org/10.1134/S1024856020060202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060202

Keywords:

  • forecast of ice
  • central region of Russia
  • WRF-ARW