Skip to main content

The Relationship between Ultraviolet Radiation and Meteorological Factors and Atmospheric Turbidity: Part I. Role of Total Ozone Content, Clouds, and Aerosol Optical Depth

Abstract

We analyze the interrelation between the daily UV–B radiation and a number of factors determining the absorption of UV radiation in the atmosphere (total ozone content (TOC), cloud amount, and aerosol optical depth (AOD)). This is done using a homogeneous time series of measurements of UV–B radiation at the Tropospheric Ozone Research (TOR) station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, from 2003 to 2016, satellite data on TOC, AOD data from the AERONET network, and data on cloud cover from the meteorological site of the Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences. The regression equations are obtained, relating the increment of the diurnal intake of UV-B radiation as a function of the increment of TOC under different cloud conditions and atmospheric transparency.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    J. Lean, “The Sun’s variable radiation and its relevance for Earth,” Ann. Rev. Astron. Astrophys. 35, 33–67 (1997).

    ADS  Article  Google Scholar 

  2. 2

    B. Pittock, “Can solar variations in the Earth’s climate?,” Clim. Change 96 (4), 483–487 (2009).

    ADS  Article  Google Scholar 

  3. 3

    V. A. Golovko, “Energy aspects of the Earth climate variation: Sight from Space,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (5), 140–154 (2012).

    Google Scholar 

  4. 4

    K. E. Trenberth, J. T. Fasullo, and M. A. Balmaseda, “Earth’s energy imbalance,” J. Climate 27 (9), 3129–3144 (2014).

    ADS  Article  Google Scholar 

  5. 5

    G. L. Stephens and T. L’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).

    Article  Google Scholar 

  6. 6

    D. W. Tarasik, V. E. Fioletov, D. I. Wardle, J. B. Kerr, L. J. B. McArthur, and C. A. McLinden, “Climatology and Trends of Surface UV Radiation,” Atmos. Ocean. 41 (2), 121–138 (2003).

    Article  Google Scholar 

  7. 7

    S. K. Solanki, N. A. Krivova, and J. D. Haigh, “Solar irradiance variability and climate,” Ann. Rev. Astron. Astrophys. 51, 311–351 (2013).

    ADS  Article  Google Scholar 

  8. 8

    O. Coddington, J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, “A solar irradiance climate data and record,” Bull. Am. Meteorol. Soc. 97 (7), 1265–1282 (2016).

    ADS  Article  Google Scholar 

  9. 9

    A. Sanchez-Lorenzo, A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicento-Serrano, A. Sanchez-Romero, R. Posselt, and M. Z. Hakuda, “Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010,” Remote Sens. Environ. 189, 108–117 (2017).

    ADS  Article  Google Scholar 

  10. 10

    A. Andrady, P. J. Aucamp, A. T. Austin, A. F. Bais, C. L. Ballare, P. W. Barnes, G. H. Bernhard, L. O. Bjorn, J. F. Bornman, D. J. Erickson, F. R. de Gruijl, D.‑P. Hader, M. Ilyas, J. Longstreth, R. M. Lucas, S. Madronich, R. L. McKenzie, R. Neale, M. Norval, K. K. Pandey, N. Paul, H. H. Redhwi, S. A. Robinson, K. Rose, M. Shao, R. P. Sinha, K. R. Solomon, B. Sulzberger, Y. Takizawa, A. Torikai, K. Tourpali, C. E. Williamson, S. R. Wilson, S.-A. Wangberg, R. C. Worrest, A. R. Young, and R. G. Zepp, “Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2015,” Photochem. Photobiol. Sci. 15 (2), 141–174 (2016).

    Article  Google Scholar 

  11. 11

    N. E. Chubarova, “Monitoring of biologically active UV radiation in the Moscow region,” Izv., Atmos. Ocean. Phys. 38 (3), 312–322 (2002).

    Google Scholar 

  12. 12

    A. De Miguel, R. Roman, J. Bilbao, and D. Mateos, “Evolution of erythemal and total shortwave solar radiation in Valladolid, Spain: Effect of atmospheric factors,” J. Atmos. Sol.-Terr. Phys. 73 (5-6), 578–586 (2011).

    ADS  Article  Google Scholar 

  13. 13

    C. S. Zerefos, K. Toupali, K. Eleftheratos, S. Kazadzis, C. Meleti, U. Feister, T. Koskela, and A. Heikkila, “Evidence of a possible turning point in solar UV-B over Canada, Europe and Japan,” Atmos. Chem. Phys. 12 (5), 2469–2477 (2012).

    ADS  Article  Google Scholar 

  14. 14

    M. I. Nakhaev, L. B. Anan’ev, N. S. Ivanova, A. M. Zvyagintsev, I. N. Kuznetsova, and I. Yu. Shalygina, “UV irradiance, UV index, and their forecast,” Tr. Gidrometeorol. Nauchno-Issled. Tsentra Ros. Federatsii, Is. 351, P. 173–187 (2014).

    Google Scholar 

  15. 15

    Yu. M. Timofeev and E. M. Shul’gina, “Russian investigations in the field of atmospheric radiation in 2011–2014,” Izv., Atmos. Ocean. Phys. 52 (5), 467–482 (2016).

    Article  Google Scholar 

  16. 16

    J. R. Herman, “Global increase UV irradiance during the past 30 year (1979–2008) estimated from satellite data,” J. Geophys. Res. D 115 (2010). https://doi.org/10.1029/2009JD012219

  17. 17

    E. Ezhova, I. Ylivinkka, J. Kuusk, K. Komsaare, M. Vana, A. Krasnova, S. Noe, M. Arshinov, B. Belan, S. Park, J. Lavric, M. Heimann, P. Kolari, T. Petäjä, P. Hari, T. Vesälä, J. Bäck, U. Rannik, V.-M. Kerminen, and M. Kulmala, “Direct effect of aerosols on solar radiation and gross primary production in boreal forest,” Atmos. Chem. Phys. 18 (24), 17863–17881 (2018).

    ADS  Article  Google Scholar 

  18. 18

    Scientific Assessment of Ozone Depletion. Report WMO N 50 (WMO, 2006).

  19. 19

    S. Simic, P. Weihs, A. Vacek, H. Kromp-Kolb, and M. Fitzka, “Spectral UV measurements in Austria from 1994–2006: Investigations of shot- and long-term changes,” Atmos. Chem. Phys. 8 (23), 7033–7043 (2008).

    ADS  Article  Google Scholar 

  20. 20

    B. Petkov, V. Vitale, C. Tomasi, M. Mazzolo, C. Lanconelli, A. Lupi, and M. Busetto, “Variations in total ozone column and biologically effective solar UV exposure doses in Bologna, Italy during the period 2005–2010,” In. J. Biometeorol. 58 (1), 31–39 (2014).

    Article  Google Scholar 

  21. 21

    M. Anton, A. Cazoria, D. Mateos, M. J. Costa, F. J. Olmo, and L. Alados-Arboledas, “Sensitivity of UV erythemal radiation to total ozone changes under different sky conditions: Results for Granada, Spain,” Photohem. Photobiol. 92 (1), 215–219 (2016).

    Article  Google Scholar 

  22. 22

    R. R. Garsia, “Atmospheric science: An Artic ozone hole?,” Nature 478 (7370), 462–463 (2011).

    ADS  Article  Google Scholar 

  23. 23

    P. Gies, A. Klekociuk, M. Tully, S. Henderson, J. Javorniczky, K. King, L. Lemus-Deschamps, and J. Makin, “Low ozone over Australia in August 2011 and its impact on solar ultraviolet radiation levels,” Photohem. Photobiol. 89 (4), 984–994 (2013).

    Article  Google Scholar 

  24. 24

    A. M. El-Nouby and E. A. Ahmed, “Comparative analysis of cloud effects on ultraviolet-B and broadband solar radiation: Dependence on cloud amount and solar zenith angle,” Atmos. Res 168, 149–157 (2016).

    Article  Google Scholar 

  25. 25

    V. De Bock, H. de Backer, R. van Malderen, A. Mangold, and A. Delcloo, “Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium,” Atmos. Chem. Phys. 14 (22), 12251–12270 (2014).

    ADS  Article  Google Scholar 

  26. 26

    I. Fountoulakis, A. F. Bais, K. Fragkos, C. Meleti, K. Tourpali, and M. M. Zempila, “Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: Effects of changes in aerosols, total ozone and clouds,” Atmos. Chem. Phys. 16 (4), 2493–2505 (2016).

    ADS  Article  Google Scholar 

  27. 27

    M. Anton, M. Sorribas, Y. Bennouna, J. M. Vilaplana, V. E. Cachorro, J. Grobner, and L. Alados-Arboledas, “Effects of an extreme desert dust event on the spectral ultraviolet irradiance at El Arenosillo (Spain),” J. Geophys. Res. D 117 (2012). https://doi.org/10.1029/2011JD016645

  28. 28

    J. L. An, Y. S. Wang, X. Li, Y. Sun, and S. H. Shen, “Relationship between surface UV radiation and air pollution in Beijing (in Chinese),” Environ Sci. 29 (4), P. 1054–1058 (2008).

    Google Scholar 

  29. 29

    N. Chubarova, Ye. Nezval, M. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its rediative effects during extreme fire event over central Russia in summer 2010,” Atmos. Meas. Tech. 5 (3), 557–568 (2012).

    Article  Google Scholar 

  30. 30

    C. Di Biagio, A. di Sarra, P. Eriksen, S. E. Ascanius, G. Muscari, and B. Holben, “Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic,” Clim. Dyn. 39 (3-4), 953–969 (2012).

    Article  Google Scholar 

  31. 31

    S. Simic, M. Fitzka, A. Schmalwieser, P. Weihs, and J. Hadzimustafic, “Factors affecting UV irradiance at selected wavelengths at Hoher Sonnblick,” Atmos. Res. 101 (4), 869–878 (2011).

    Article  Google Scholar 

  32. 32

    M. Yu. Arshinov, B. D. Belan, V. V. Zuev, V. E. Zuev, V. K. Kovalevskii, A. V. Ligotskii, V. E. Meleshkin, M. V. Panchenko, E. V. Pokrovskii, A. N. Rogov, D. V. Simonenkov, and G. N. Tolmachev, “TOR-station for monitoring of atmospheric parameters,” Atmos. Ocean. Opt. 7 (8), 580–584 (1994).

    Google Scholar 

  33. 33

    D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Ocean. Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  34. 34

    B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Many-year monitoring of total and UV (B) radiation in Tomsk city,” Opt. Atmos. Okeana 25 (1), 61–65 (2012).

    Google Scholar 

  35. 35

    B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Long-term monitoring of total and UV-B radiation in Tomsk,” Atmos. Ocean. Opt. 25 (4), 281–285 (2012).

    Article  Google Scholar 

  36. 36

    B. D. Belan, G. A, Ivlev, and T. K. Sklyadneva, “Variations of UV-B radiation in Tomsk in 2003–2007,” Atmos. Ocean. Opt. 21 (7), 535–539 (2008).

    Google Scholar 

  37. 37

    Yu. V. Zhitorchuk, V. V. Stadnik, and I. N. Shamina, “Study of linear trends in time series of solar radiation,” Izv. RAN. Fiz. Atmos. Okeana. 30 (3), 389–391 (1994).

    Google Scholar 

  38. 38

    https://aeronet.gsfc.nasa.gov. Cited February 26, 2020.

  39. 39

    D. M. Giles, A. Sinyuk, M. G. Sorokin, J. S. Schafer, A. Smirnov, I. Slutsker, T. F. Eck, B. N. Holben, J. R. Lewis, J. R. Campbell, E. J. Welton, S. V. Korkin, and A. I. Lyapustin, “Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements,” Atmos. Meas. Tech. 12, 169–209 (2019).

    Article  Google Scholar 

  40. 40

    G. R. Casale, D. Meloni, S. Palmieri, and A. M. Siani, “Solar UV-B irradiance and total ozone in Italy: Fluctuations and trends,” J. Geophys. Res. D 105 (4), 4895–4901 (2000).

    ADS  Article  Google Scholar 

  41. 41

    T. K. Sklyadneva, T. M. Rasskazchikova, V. G. Arshinova, and M. Yu. Arshinov, “Changes in radiation and meteorological parameters of the atmosphere from observation data in Tomsk,” Opt. Atmos. Okeana 31 (4), 288–293 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank organizers of the websites https://aeronet.gsfc.nasa.gov, http://giovanni.gsfc.nasa.gov for compiling information and providing the possibility for its free use.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-05-50024). The work was carried out using the infrastructure of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences created and run within State Assignment no. АААА-А17-117021310142-5, including the Center for Collective Use Atmosphere.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belan, B.D., Ivlev, G.A. & Sklyadneva, T.K. The Relationship between Ultraviolet Radiation and Meteorological Factors and Atmospheric Turbidity: Part I. Role of Total Ozone Content, Clouds, and Aerosol Optical Depth. Atmos Ocean Opt 33, 638–644 (2020). https://doi.org/10.1134/S1024856020060196

Download citation

Keywords:

  • atmosphere
  • ultraviolet radiation
  • total ozone content
  • clouds
  • variations