S. P. Perov and A. Kh. Khrgian, Modern Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].
Google Scholar
V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (Moscow State Univ., Moscow, 1998) [in Russian].
Google Scholar
B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].
Google Scholar
S. V. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Kinetics and Mechnics) (Nauka, Moscow, 1974) [in Russian].
Google Scholar
WMO Reactive Gases. Bull. No. 2 (WMO, 2018).
A. J. Haagen-Smit, “Chemistry and physiology of Los Angeles smog,” Ind. Eng. Chem. 44, 1342–1346 (1952).
Article
Google Scholar
A. J. Haagen-Smit and M. M. Fox, “Ozone formation in photochemical oxidation of organic substances,” Ind. Eng. Chem. 48, 1484–1487 (1956).
Article
Google Scholar
D. R. Blake and F. S. Rowland, “Urban leakage of liquefied petroleum gas and its impact on Mexico city air quality,” Science 269 (5226), 953–956 (1995).
ADS
Article
Google Scholar
B. D. Belan, “LPG conversion of vehicles—possible problems,” Vestn. Ros. Akad. Nauk 85 (3), 233–239 (2015).
Google Scholar
N. F. Elanskii, ”Russian studies of atmospheric ozone and its precursors in 2015–2018,” Izv., Atmos. Ocean. Phys. 56 (2), 141–155 (2020).
Article
Google Scholar
V. P. Chelibanov, S. N. Kotel’nikov, N. V. Smirnov, and E. A. Yasenko, “Prospects of PAK-8816 hardware-software complex in the construction of a global system for atmospheric air pollution monitoring,” Biosfera 7 (1), 26–30 (2015).
Article
Google Scholar
V. A. Lapchenko and A. M. Zvyagintsev, “Trace atmospheric gases in the Karadag Nature Reserve in Crimea,” Atmos. Ocean. Opt. 28 (4), 308–311 (2015).
Article
Google Scholar
Y. Zhang, H. Mao, A. Ding, D. Zhou, and C. Fu, “Impact of synoptic weather patterns on spatio-temporal variation in surface O3 levels in Hong Kong during 1999–2011,” Atmos. Environ. 73, 41–50 (2013).
ADS
Article
Google Scholar
L. Shen, L. J. Mickley, and A. P. K. Tai, “Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012,” Atmos. Chem. Phys. 15 (19), 10925–10938 (2015).
ADS
Article
Google Scholar
T. Plocostea, R. Calif, and S. Jacoby-Koalyb, “Multi-scale time dependent correlation between synchronous measurements of ground-level ozone and meteorological parameters in the Caribbean Basin,” Atmos. Environ. 211, 234–246 (2019).
ADS
Article
Google Scholar
A. M. Zvyagintsev, I. N. Kuznetsova, I. Yu. Shalygina, E. A. Lezina, V. A. Lapchenko, M. P. Nikiforova, and V. I. Demin, “Study and monitoring of surface ozone in Russia,” Tr. Gidromettsentra Rossiiskoi Federatsii. No. 365, 56–70 (2017).
Google Scholar
V. G. Arshinova, B. D. Belan, V. A. Lapchenko, E. V. Lapchenko, T. M. Rasskazchikova, D. E. Savkin, T. K. Sklyadneva, G. N. Tolmachev, and A. F. Fofronov, “Changes in surface ozone concentration during precipitation,” Atmos. Ocean. Opt. 32 (6), 671–679 (2019).
Article
Google Scholar
I. Yu. Shalygina, I. N. Kuznetsova, and V. A. Lapchenko, “Surface ozone regime at Kara Dag station in Crimea according to observations in 2009–2018,” Gidrometeorologicheskie Issledovaniya Prognozy. No. 2, 102–113 (2019).
Google Scholar
A. M. Lyudchik, V. I. Pokatashkin, and R. Girgzhdene, “On the relationship between the time of snow cover melting and the appearance of the spring ozone maximum,” in Proc. of the Workshop “Problems of Monitoring of Surface (Tropospheric) Ozone and Neutralization of Its Effect” (Institute of General Physics RAS, Moscow, 2013), p. 87–91 [in Russian].
O. E. Clifton, A. M. Fiore, J. William, W. J. Massman, C. B. Baublitz, M. Coyle, L. Emberson, S. Fares, D. K. Farmer, P. Gentine, G. Gerosa, A. B. Guenther, D. Helmig, D. L. Lombardozzi, J. W. Munger, E. G. Patton, S. E. Pusede, D. B. Schwede, S. J. Silva, M. Sorgel, A. L. Steiner, and A. P. K. Tai, “Dry deposition of ozone over land: Processes, measurement, and modeling,” Rev. Geophys. 58 (1), 1–62 (2020).
Article
Google Scholar
O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Study of air composition in different air masses,” Atmos. Ocean. Opt. 32 (1), 72–79 (2019).
Article
Google Scholar
H. Ueno and N. Tsunematsu, “Sensitivity of ozone production to increasing temperature and reduction of precursors estimated from observation data,” Atmos. Environ. 211, 234–246 (2019).
Article
Google Scholar
W. C. Porter and C. L. Heald, “The mechanisms and meteorological drivers of the summertime ozone-temperature relationship,” Atmos. Chem. Phys. 19 (21), 13367–13381 (2019).
ADS
Article
Google Scholar
B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Air-temperature dependence of the ozone generation rate in the surface air layer,” Atmos. Oceanic Opt. 31 (2), 187–196 (2018).
Article
Google Scholar
M. Ma, Y. Gao, Y. Wang, S. Zhang, L. R. Leung, C. Liu, S. Wang, B. Zhao, X. Chang, H. Su, T. Zhang, L. Sheng, X. Yao, and H. Gao, “Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017,” Atmos. Chem. Phys. 19 (19), 12195–12207 (2019).
ADS
Article
Google Scholar
L. Yang, H. Luo, Z. Yuan, J. Zheng, Z. Huang, C. Li, X. Lin, P. K. K. Louie, D. Chen, and Y. Bian, “Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River delta, China, and implications for ozone control strategy,” Atmos. Chem. Phys. 19 (20), 12901–12916 (2019).
ADS
Article
Google Scholar
N. F. Elanskii and I. A. Senik, “Measurements of the surface ozone concentration at Kislovodsk high mountain station: Seasonal and daily variations,” Izv. RAN. Fiz. Atmos. Okeana 31 (2), 251–259 (1995).
Google Scholar
I. A. Senik, N. F. Elanskii, I. B. Belikov, L. V. Lisitsyna, V. V. Galaktionov, and Z. V. Kortunova, “Main patterns of the temporal variability of surface ozone in the region of the town of Kislovodsk at 870 and 2070 m above sea level,” Izv. Atmos. Ocean. Phys. 41 (1), 67–79 (2005).
Google Scholar
K. A. Shukurov, I. A. Senik, and O. V. Postylyakov, “Effect of long-range transport on the surface ozone at the high mountain scientific station of the Institute of General Physics, Russian Academy of Sciences (Northern Caucasus, Kislovodsk),” in Proc. of the XXVI International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics,” July 6–10,
2020, Moscow, Russia (Publishing House of IAO SB RAS, Tomsk, 2020). P. D-211.
K. A. Shukurov, O. V. Postylyakov, A. N. Borovski, L. M. Shukurova, A. N. Gruzdev, A. S. Elokhov, V. V. Savinykh, I. I. Mokhov, V. A. Semenov, O. G. Chkhetiani, and I. A. Senik, “Study of transport of atmospheric admixtures and temperature anomalies using trajectory methods at the A.M. Obukhov Institute of Atmospheric Physics,” IOP Conf. Ser.: Earth Environ. Sci. 231, 012048 (2019). https://doi.org/10.1088/1755-1315/231/1/012048
V. E. Zuev, B. D. Belan, D. M. Kabanov, V. K. Kovalevskii, O. Yu. Luk’yanov, V. E. Meleshkin, M. K. Mikushev, M. V. Panchenko, I. E. Penner, E. V. Pokrovskii, S. M. Sakerin, S. A. Terpugova, A. G. Tumakov, V. S. Shamanaev, and A. I. Shcherbatov, “The “OPTIK-E” AN-30 aircraft-laboratory for ecological investigations,” Atmosp. Ocean. Opt. 5 (10), 658–663 (1992).
Google Scholar
G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “OPTIK Tu-134 aicraft laboratory,” Opt. Atmos. Okeana. 24 (9), 805–816 (2011).
Google Scholar
M. Yu. Arshinov, B. D. Belan, O. A. Krasnov, V. K. Kovalevskii, V. A. Pirogov, A. P. Plotnikov, G. N. Tolmachev, and A. V. Fofonov, “Comparison of ultraviolet and chemiluminescent ozonometers,” Atmosp. Ocean. Opt. 15 (8), 656–658 (2002).
Google Scholar
E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, B. K. Lamb, E. J. Allwine, M. Grutter, C. R. Ramos Villegas, C. Marquez, S. Blanco, B. Cardenas, C. E. Kolb, L. T. Molina, and M. J. Molina, “Technical note: Evaluation of standard ultraviolet absorption ozone monitors in a polluted urban environment,” Atmos. Chem. Phys. 6 (10), 163–3180 (2006).
Article
Google Scholar
B. D. Belan, G. N. Tolmachev, and A. V. Fofonov, “Ozone vertical distribution in the troposphere over south regions of Western Siberia,” Atmos. Oceanic Opt. 24 (2), 181–187 (2011).
Article
Google Scholar
K. B. Moiseenko, Yu. A. Shtabkin, E. V. Berezina, and A. I. Skorokhod, “Regional photochemical surface-ozone sources in Europe and Western Siberia,” Izv., Atmos. Ocean. Phys. 54 (6), 545–557 (2018).
Article
Google Scholar
D. Akritidis, A. Pozzer, and P. Zanis, “On the impact of future climate change on tropopause folds and tropospheric ozone,” Atmos. Chem. Phys. 19 (22), 14387–14401 (2019).
ADS
Article
Google Scholar
P. T. Griffiths, J. Keeble, Y. M. Shin, N. L. Abraham, A. T. Archibald, and J. A. Pyle, “On the changing role of the stratosphere on the tropospheric ozone budget: 1979–2010,” Geophys. Rev. Lett. 46 (10) (2020). https://doi.org/10.1029/2019GL086901
P. Kalabokas, N. R. Jensen, M. Roveri, J. Hjorth, M. Eremenko, J. Cuesta, G. Dufour, G. Foret, and M. Beekmann, “A study of the influence of tropospheric subsidence on spring and summer surface ozone concentrations at the JRC Ispra station in northern Italy,” Atmos. Chem. Phys. 20 (4), 1861–1885 (2020).
ADS
Article
Google Scholar
X. Zhu, Z. Ma, Z. Li, J. Wu, H. Guo, X. Yin, X. Ma, and L. Qiao, “Impacts of meteorological conditions on nocturnal surface ozone enhancement during the summer-time in Beijing, ” Atmos. Environ. 225, 117368 (2020)
Article
Google Scholar
Hygienic standard GN 2.1.6.3492-17 “Maximum permissible concentration (MPC) of pollutants in urban and rural air”. Resolution of the Chief State Sanitary Doctor of the Russian Federation No. 165 of December 22, 2017 (as amended on May 31, 2018).
Hygienic standard GN 2.2.5.3532-18 “Maximum permissible concentrations (MPC) of harmful substances in the air of the working area”. Resolution of the Chief State Sanitary Doctor of the Russian Federation No. 25 of February 13, 2018.
A. Ari, “A comprehensive study on gas and particle emissions from laser printers: Chemical composition and health risk assessment,” Atmos. Pollut. Res 11. (2), 269–282 (2020).
Article
Google Scholar