Skip to main content

The Analysis of OCO-2 Satellite Measurements of CO2 in the Vicinity of Russian Cities

Abstract

Spatiotemporal variability of CO2 has been analyzed on the basis of OCO-2 satellite measurements (more than 300 days during 4.5 years and more than 50 000 measurements) in the vicinity of Moscow, St. Petersburg, Yekaterinburg, Magnitogorsk, and Norilsk (circles with radii of 100 km from the city centers). The comparison of the measurements shows the XCO2 datasets with quality flag “0” to be homogeneous, amplitudes of XCO2 variations to be 5–6%, and standard deviations to be lower than 1%. The maximal spatial variations in XCO2 are 2–4%, which significantly differs from the analysis results for OCO-2 data with quality flag “1”.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland, 2019).

    Google Scholar 

  2. F. M. Hopkins, J. R. Ehleringer, S. E. Bush, R. M. Duren, C. E. Miller, C.-T. Lai, Y.-K. Hsu, V. Carranza, and J. T. Randerson, “Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies,” Earth’s Future 4, 408–425 (2016).

    ADS  Article  Google Scholar 

  3. X. Zhao, J. Marshall, S. Hachinger, C. Gerbig, M. Frey, F. Hase, and J. Chen, “Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG,” Atmos. Chem. Phys. 19, 11279–11302 (2019).

    ADS  Article  Google Scholar 

  4. D. Wunch, G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Philos. Trans. R. Soc. A 369, 2087–2112 (2011).

    ADS  Article  Google Scholar 

  5. Satellite Missions Database. https://directory.eoportal.org/web/eoportal/satellite-missions/. Cited January 25, 2020.

  6. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Sh. Maksutov, M. Sasakawa, and Ko. Shimoyama, “The dynamics in vertical distribution of greenhouse gases in the atmosphere,” Opt. Atmos. Okeana 25 (12), 1051–1061 (2012).

    Google Scholar 

  7. J. Hakkarainen, I. Ialongo, and J. Tamminen, “Direct space-based observations of anthropogenic CO2 emission areas from OCO-2,” Geophys. Rev. Lett. 43, 11400 (2016).

    ADS  Article  Google Scholar 

  8. Yu. M. Timofeev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovskii, N. N. Filippov, and S. Ch. Foka, “Spatial-temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements,” Izv. Atmos. Ocean. Phys. 55 (1), 59-64 (2019).

    Article  Google Scholar 

  9. Yu. M. Timofeev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, and A. A. Nikitenko, “Analysis of mesoscale variability of carbon dioxide in the vicinity of Moscow megacity based on satellite data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 16 (4), 263–270 (2019). https://doi.org/10.21046/2070-7401-2019-16-4-263-270

    Article  Google Scholar 

  10. Yu. M. Timofeev, I. A. Berezin, Ya. A. Virolainen, A. V. Poberovskii, M. V. Makarova, and A. V. Polyakov, “Estimates of anthropogenic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements,” Opt. Atmos. Okeana 33 (4), 261–265 (2020).

    Google Scholar 

  11. Jet Propulsion Laboratory. California Institute of Technology. https://ocov2.jpl.nasa.gov/. Cited January 25, 2020.

  12. Orbiting Carbon Observatory-2 Launch (Press Kit). www.jpl.nasa.gov/news/press_kits/oco2-launch-press-kit.pdf. Cited January 25, 2020.

  13. A. Eldering, C. W. O’Dell, P. O. Wennberg, D. Crisp, M. R. Gunson, C. Viatte, C. Avis, A. Braverman, R. Castano, A. Chang, L. Chapsky, C. Cheng, B. Connor, L. Dang, G. Doran, B. Fisher, C. Frankenberg, D. Fu, R. Granat, J. Hobbs, R. A. M. Lee, L. Mandrake, D. McDuffie, C. E. Miller, V. Myers, V. Natraj, D. O’Brien, D. B. Osterman, F. Oyafuso, V. H. Payne, H. R. Pollock, I. Polonsky, C. M. Roehl, R. Rosenberg, F. Schwandner, M. Smyth, V. Tang, T. E. Taylor, C. To, D. Wunch, and J. Yoshimizu, “The Orbiting Carbon Observatory-2: First 18 months of science data products,” Atmos. Meas. Tech. 10, 549–563 (2017).

    Article  Google Scholar 

  14. D. Wunch, P. O. Wennberg, G. Osterman, B. Fisher, B. Naylor, C. M. Roehl, C. O’Dell, L. Mandrake, C. Viatte, M. Kiel, D. W. T. Griffith, N. M. Deutscher, V. A. Velazco, J. Notholt, T. Warneke, C. Petri, M. De Maziere, M. K. Sha, R. Sussmann, M. Rettinger, D. Pollard, J. Robinson, I. Morino, O. Uchino, F. Hase, T. Blumenstock, D. G. Feist, S. G. Arnold, K. Strong, J. Mendonca, R. Kivi, P. Heikkinen, L. Iraci, J. Podolske, P. W. Hillyard, S. Kawakami, M. K. Dubey, H. A. Parker, E. Sepulveda, O. E. Garcia, Y. Te, P. Jeseck, M. R. Gunson, D. Crisp, and A. Eldering, “Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON,” Atmos. Meas. Tech. 10, 2209–2238 (2017).

    Article  Google Scholar 

  15. S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. Gonzalez, T. Blumenstock, S. Dohe, O. E. Garcia, E. Sepulveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J. Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Griffith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, and U. Raffalski, “Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets,” Atmos. Meas. Tech. 8, 1555–1573 (2015).

    Article  Google Scholar 

  16. A. Liang, W. Gong, G. Han, and C. Xian, “Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON,” Remote Sens. 9, 1033 (2017).

    ADS  Article  Google Scholar 

  17. S. Ch. Foka, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeev, “Temporal variations in CO2, CH4, and CO concentrations in Saint-Petersburg suburb (Peterhof),” Opt. Atmos. Okeana 32 (10), 860–866 (2019).

    Google Scholar 

  18. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016).

    ADS  Article  Google Scholar 

  19. Yu. M. Timofeev, A. V. Polyakov, Ya. A. Virolainen, M. V. Makarova, D. V. Ionov, A. V. Poberovskii, and Kh. Kh. Imkhasin, “Estimates of trends of climatically important atmospheric gases near St. Petersburg,” Izv. Atmos. Ocean. Phys. 56 (1), 79–84 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the scientists from the California Institute of Technology for provision of OCO-2 measurement data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikitenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikitenko, A.A., Timofeev, Y.M., Berezin, I.A. et al. The Analysis of OCO-2 Satellite Measurements of CO2 in the Vicinity of Russian Cities. Atmos Ocean Opt 33, 650–655 (2020). https://doi.org/10.1134/S1024856020060111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060111

Keywords:

  • spatiotemporal variability of carbon dioxide
  • OCO-2 satellite
  • XCO2 variations
  • data quality flag