Skip to main content

Comparison of Postdetection Correction of Short- and Long-Exposure Images Formed by Traditional and Multiaperture Observation Systems in a Turbulent Atmosphere

Abstract

The efficiency of retrieval of images distorted by atmospheric turbulence formed by single- and multiaperture systems is analyzed. It is shown in numerical simulation that the use of multiaperture observation systems for computer correction of atmospheric distortions under anisoplanatism can significantly reduce the exposure time. The main distortions are well corrected when imaging for a short exposure time, which corresponds to the case of a “frozen” turbulent medium. Correction of residual small-scale distortions requires an-order-of-magnitude shorter time than in the case of long-exposure imaging with the use of common single-aperture observation systems.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. Ivanov and D. McGaughey, “Image reconstruction by aperture diversity blind deconvolution,” in Proc. AMOS Tech. Conf. 12–15 September, 2007, Wailea, Maui, Hawaii. P. E78.

  2. C. S. Huebner and M. Greco, “Blind deconvolution algorithms for the restoration of atmospherically degraded imagery: A comparative analysis,” Proc. SPIE—Int. Soc. Opt. Eng. 7108, 71080 (2008).

  3. T. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10 (5), 1064–1073 (1993).

    ADS  Article  Google Scholar 

  4. A. P. Averin, Yu. B. Morozov, V. S. Pryanichnikov, and V. V. Tyapin, “Computer correction of turbulent distortions of image of extended objects on near-Earth paths,” Quantum Electron. 41 (5), 475–478 (2011).

    ADS  Article  Google Scholar 

  5. X. Zhu and P. Milanfar, “Image reconstruction from videos distorted by atmospheric turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7543, 75 430 (2010).

  6. D. A. Hope, S. M. Jefferies, M. Hart, and J. G. Nagy, “High-resolution speckle imaging through strong atmospheric turbulence,” Opt. Express 24 (11), 12116–12129 (2016).

    ADS  Article  Google Scholar 

  7. V. V. Dudorov and A. S. Eremina, “Computer correction of turbulent distortions of incoherent optical images using multi-aperture systems,” Opt. Atmos. Okeana 31 (2), 95–102 (2018).

    Google Scholar 

  8. V. V. Dudorov and A. S. Eremina, “Computer correction of turbulent distortions of incoherent optical images using multi-aperture systems,” Proc. SPIE—Int. Soc. Opt. Eng. 10787, 107870 (2018).

  9. N. J. Miller, J. W. Haus, P. F. McManamon, and D. Shemano, “Multi-aperture coherent imaging,” Proc. SPIE—Int. Soc. Opt. Eng. 8052, 805207–1 (2009).

  10. G. Carles, G. Muyo, N. Bustin, A. Wood, and A. R. Harvey, “Compact multi-aperture imaging with high angular resolution,” J. Opt. Soc. Am. A 32 (3), 411–419 (2015).

    ADS  Article  Google Scholar 

  11. Imaging through volume turbulence (IVT). www.radiantsolutions.com/capabilities/enrich/sensor-data-enrichment. Cited April 6, 2020.

  12. V. V. Dudorov and A. S. Eremina, “Retrieval of crosswind velocity based on the analysis of remote object images: Part 2—Drift of turbulent volume,” Atmos. Ocean. Opt. 30 (6), 596–603 (2017).

    Article  Google Scholar 

  13. V. V. Dudorov and A. S. Eremina, “Visualization of the wind drift of turbulent inhomogeneities,” Proc. SPIE—Int. Soc. Opt. Eng. 10787 (2018). https://doi.org/10.1117/12.2502461

  14. V. P. Lukin, N. N. Botygina, L. V. Antoshkin, A. G. Borzilov, O. N. Emaleev, P. A. Konyaev, P. G. Kovadlo, D. Yu. Kolobov, A. A. Selin, E. L. Soin, A. Yu. Shikhovtsev, and S. A. Chuprakov, “Multi-cascade image correction system for the Large solar vacuum telescope,” Atmos. Ocean. Opt. 32 (5), 597–606 (2019).

    Article  Google Scholar 

Download references

Funding

This work partially supported by the Russian Science Foundation (project no. 18-79-00179).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Dudorov or A. S. Nasonova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dudorov, V.V., Nasonova, A.S. Comparison of Postdetection Correction of Short- and Long-Exposure Images Formed by Traditional and Multiaperture Observation Systems in a Turbulent Atmosphere. Atmos Ocean Opt 33, 578–583 (2020). https://doi.org/10.1134/S102485602006010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602006010X

Keywords:

  • multiaperture system
  • turbulent atmosphere
  • incoherent image