Skip to main content

Validation of ECHAM AGCMs Using Laser Spectrometer Data from Two Arctic Stations


To validate the atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso with embedded water isotopic modules, nudging mode simulations were performed to known fields of temperature, pressure, wind speed and direction derived from retrospective climate analysis. The simulation results are compared with data on the isotopic composition (δHDO and δH218O) of water vapor in atmospheric air near the surface received at two monitoring stations: in Labytnangi (66.660° N, 66.409° E) and in Igarka (67.453° N, 86.535° E). The superiority of the newer model ECHAM6-wiso could not be unambiguously concluded, because the results of simulation in this model show a better agreement with data from Igarka, while the model ECHAM5-wiso shows a better agreement with the data measured in Labytnangi. The simulation results can be used as an a priori ensemble for the solution of the inverse problems of remote atmospheric sensing in western Siberia.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. I. I. Mokhov, “Climate changes in Arctic,” Zemlya Vselennaya, No. 2, 34–40 (2006).

    Google Scholar 

  2. A. A. Karakhanyan, “Long-term variations in the atmospheric circulation and climate over Siberia,” Atmo-s. Ocean. Opt. 18 (12), 994–996 (2005).

    Google Scholar 

  3. V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades,” Izv. Atmos. Ocean. Phys. 48 (4), 355–372 (2012).

    Article  Google Scholar 

  4. T. V. Callaghan and S. Jonasson, “Arctic terrestrial ecosystems and environmental change,” Philos. Trans. R. Soc. London, No. 352, 259–276 (1995).

  5. E. J. Dlugokencky, K. A. Masarie, P. M. Lang, and P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature, No. 393, 447–450 (1998).

    ADS  Article  Google Scholar 

  6. M. I. Budyko, Climate in the Past and in the Future (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  7. V. M. Kattsov and B. N. Porfir’ev, “Climate changes in the Arctic: Consequences for the Environment and Economy,” Arktika: Ekologiya Ekonomika, No. 2, 66–79 (2012).

    Google Scholar 

  8. I. M. Held, “Robust responses of the hydrological cycle to global warming,” J. Clim. 19 (21), 5686–5699 (2006).

    ADS  Article  Google Scholar 

  9. G. A. Schmidt, G. Hoffmann, D. T. Shindell, and Y. Hu, “Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange,” J. Geophys. Res., No. 110, D21314 (2005).

  10. W. Dansgaard, “Stable isotopes in precipitation,” Tellus 16 (4), 436–468 (1964).

    ADS  Article  Google Scholar 

  11. J. Jouzel, R. B. Alley, K. M. Cuffey, W. Dansgaard, P. Grootes, G. Hoffmann, S. J. Jonsen, R. D. Koster, D. Peel, C. A. Shuman, M. Stievenard, M. Stuiver, and J. W. White, “Validity of the temperature reconstruction from water isotopes in ice cores,” J. Geophys. Res., No. 102 (C12), 26471–26487 (1997).

  12. C. Sturm, Q. Zhang, and D. Noone, “An introduction to stable water isotopes in climate models: Benefits of forward proxy modelling for paleoclimatology,” Clim. Past, No. 6, 115–129 (2010).

  13. V. A. Polyakov and V. I. Ferronskii, Earth Hydrosphere Isotopy (Nauchnyi mir, Moscow, 2009) [in Russian].

  14. J. Galewsky, H. C. Steen-Larsen, R. D. Field, J. Worden, C. Risi, and M. Schneider, “Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle,” Rev. Geophys. 54 (4), 809–865 (2016).

    ADS  Article  Google Scholar 

  15. E. Roeckner, K. Arpe, L. Bengtsson, S. Brinkop, L. Dumenil, M. Esch, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, U. Schleese, S. Schubert, and M. Windelband, Simulation of the Present-Day Climate with the ECHAM Model: Impact of Model Physics and Resolution (Max Planck Institute for Meteorology, Hamburg, 1992).

    Google Scholar 

  16. E. Roeckner, G. Bauml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and A. Tompkins, The General Circulation Model ECHAM5. Part I: Model Description (Max Planck Institute for Meteorology, Hamburg, 2003).

    Google Scholar 

  17. M. Werner, P. M. Langebroek, T. Carlsen, M. Herold, and G. Lohmann, “Stable water isotopes in the ECHAM5 general circulation model: Towards high-resolution isotope modeling on a global scale,” J. Geophys. Res. 116 (D15109) (2011).

  18. A. Cauquoin, M. Werner, and G. Lohmann, “Water isotopes—climate relationships for the mid-holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM,” Clim. Past, No. 15, 1913–1937 (2019).

  19. G. Hoffmann, M. Werner, and M. Heimann, “Water Isotope Module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years,” J. Geophys. Res. 103 (D14), 16871–16896 (1998).

    ADS  Article  Google Scholar 

  20. G. Hoffmann, J. Jouzel, and V. Masson, “Stable water isotopes in atmospheric general circulation models,” Hydrol. Process 14 (8), 1385–1406 (2000).

    ADS  Article  Google Scholar 

  21. J.-E. Lee, I. Fung, D. J. De Paolo, and C. C. Henning, “Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model,” J. Geophys. Res. 112 (D16306) (2007).

  22. J. C. Tindall, P. J. Valdes, and L. C. Sime, “Stable water isotopes in HadCM3: Isotopic signature of El Nino—Southern Oscillation and the tropical amount effect,” J. Geophys. Res. 114 (D04111) (2009).

  23. C. Risi, S. Bony, F. Vimeux, and J. Jouzel, “Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records,” J. Geophys. Res. 115 (D12118) (2010).

  24. M. Werner, “Modelling stable water isotopes: Status and perspectives,” EPJ Web Conf, No. 9, 73–82 (2010).

  25. M. Butzin, M. Werner, V. Masson-Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov, “Variations of oxygen-18 in West Siberian precipitation during the last 50 years,” Atmos. Chem. Phys., No. 14, 5853–5869 (2014).

  26. rev.pdf. Cited February 9, 2019.

  27. European Centre for Medium-Range Weather Forecasts. 2017, updated monthly. ERA5 Reanalysis. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.

  28. V. I. Zakharov, R. Imasu, K. G. Gribanov, G. Hoffmann, and J. Jouzel, “Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data,” Geophys. Rev. Lett. 31 (L12104) (2004).

  29. H. Herbin, D. Hurtmans, C. Clerbaux, L. Clarisse, and P.-F. Coheur, “H2 16O and HDO measurements with IASI/ MetOp,” Atmos. Chem. Phys., No. 9, 9433–9447 (2009).

Download references


The authors are grateful to V.G. Shtro and N.L. Konevshi for maintaining the equipment of monitoring stations in Labytnangi and Igarka.


The study was supported by the Russian Science Foundation (grant no. 18-11-00024).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to N. Yu. Denisova or K. G. Gribanov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denisova, N.Y., Gribanov, K.G. & Werner, M. Validation of ECHAM AGCMs Using Laser Spectrometer Data from Two Arctic Stations. Atmos Ocean Opt 33, 702–707 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • atmospheric general circulation model
  • water isotopologues