Skip to main content

Study of the Spatial Distributions of CO2 and CH4 in the Surface Air Layer over Western Siberia Using a Mobile Platform


We present the results of a large-scale study of carbon dioxide and methane distributions carried out on the territory of Western Siberia in 2018–2019 using a Picarro G4301 portable gas analyzer. The analysis of the data made it possible to retrieve the spatial distribution of background CO2 and CH4 concentrations with a high resolution. The inhomogeneities found in the CO2 and CH4 distributions were both due to the effect of ecosystems characteristic for different regions of Western Siberia and to specific features of their seasonal cycles.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.


  1. M. McNutt, “Times’s up, CO2,” Science 365 (6432), 411 (2019).

    ADS  Article  Google Scholar 

  2. S. S. George, “Aberrant synchrony of present-day warming,” Nature 571 (7766), 481–482 (2019).

    Article  Google Scholar 

  3. R. Neukom, N. Steiger, J. J. Gomez-Navarro, J. Wang, and J. P. Werner, “No evidence for globally coherent warm and cold periods over the preindustrial common era,” Nature 571 (7766), 550–554 (2019).

    ADS  Article  Google Scholar 

  4. WMO Greenhouse Gas Bulletin (WMO, Geneva, Switzerland, 2019), vol. 15.

  5. N. Hohne, M. Elzen, J. Rogelj, B. Metz, T. Fransen, T. Kuramochi, A. Olhoff, J. Alcamo, H. Winkler, S. Fu, M. Schaeffer, R. Schaeffer, G. P. Peters, S. Maxwell, and N. K. Dubash, “Emissions: World has four times the work or one-third of the time,” Nature 579 (7797), 25–28 (2020).

    ADS  Article  Google Scholar 

  6. Workshop Proceedings of the 6th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2011), Wellington, New Zealand, October 25–28, 2011. GAW Report No 206 (WMO, 2012).

  7. A. E. Andrews, J. D. Kofler, M. E. Trudeau, J. C. Williams, D. H. Neff, K. A. Masarie, D. Y. Chao, D. R. Kitzis, P. C. Novelli, C. L. Zhao, E. J. Dlugokencky, P. M. Lang, M. J. Crotwell, M. L. Fischer, M. J. Parker, J. T. Lee, D. D. Baumann, A. R. Desai, C. O. Stanier, S. F. J. De Wekker, D. E. Wolfe, J. W. Munger, and P. P. Tans, “CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts,” Atmos. Meas. Tech. 7 (2), 647–687 (2014).

    Article  Google Scholar 

  8. Cited February 19, 2020.

  9. A. Rammig, “Tropical carbon sinks are out of sync,” Nature 579 (7797), 38–39 (2020).

    ADS  Article  Google Scholar 

  10. D. Belikov, M. Arshinov, B. Belan, D. Davydov, A. Fofonov, M. Sasakawa, and T. Machida, “Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at tower network in Siberia from 2005 to 2016,” Atmosphere 10 (11), 689 (2019).

    ADS  Article  Google Scholar 

  11. A. Schmidt, C. W. Rella, M. Gockede, C. Hanson, Z. Yang, and B. E. Law, “Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling,” Atmos. Environ. 97, 94–108 (2014).

    ADS  Article  Google Scholar 

  12. T. G. Shepherd, “Effects of a warming Arctic,” Science 353 (6303), 989–990 (2016).

    ADS  Article  Google Scholar 

  13. O. M. Johannessen, S. I. Kuzmina, L. P. Bobylev, and M. W. Miles, “Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation,” Tellus A 68 (2016).

  14. M. Sasakawa, K. Shimoyama, T. Machida, N. Tsuda, H. Suto, M. Arshinov, D. Davidov, A. Fofonov, O. Krasnov, T. Saeki, Y. Koyama, and S. Maksyutov, “Continuous measurement of methane concentration using 9-tower network over Siberia,” Tellus B 62 (5), 403–416 (2010).

    ADS  Article  Google Scholar 

  15. E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92 (3), 403–408 (2008).

    ADS  Article  Google Scholar 

  16. H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3 (2), 375–386 (2010).

    Article  Google Scholar 

  17. H. Nara, H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata, and C. W. Rella, “Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy,” Atmos. Meas. Tech. 5 (11), 2689–2701 (2012).

    Article  Google Scholar 

  18. L. N. Sinitsa, A. A. Lugovskoi, V. I. Serdyukov, and M. Yu. Arshinov, “Changes in the multilayer dielectric coating reflection coefficient under variation in the medium humidity,” Atmos. Ocean. Opt. 31 (6), 574–581 (2018).

    Article  Google Scholar 

  19. V. I. Serdyukov, L. N. Sinitsa, and A. A. Lugovskoi, “Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors,” Appl. Opt. 55 (17), 4763–4768 (2016).

    ADS  Article  Google Scholar 

  20. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, A. V. Kozlov, A. V. Fofonov, and V. G. Arshinova, “Heterogeneity of the spatial distribution of CO2 and ch4 concentrations in the atmospheric surface layer over West Siberia: October–November 2018,” Proc. SPIE—Int. Soc. Opt. Eng. 11 208 (2019).

  21. I. A. Perez, M. L. Sanchez, M. A. Garcia, and N. Pardo, “An experimental relationship between airflow and carbon dioxide concentrations at a rural site,” Sci. Total Environ. 533, 432–438 (2015).

    ADS  Article  Google Scholar 

  22. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Study of air composition in different air masses,” Atmos. Ocean. Opt. 32 (1), 72–79 (2019).

    Article  Google Scholar 

  23. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, O. A. Krasnov, Sh. Sh. Macsutov, T. Machida, M. Sasakawa, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 1. Geographic features and temporal dynamics,” Opt. Atmos. Okeana 31 (8), 670–681 (2018).

    Article  Google Scholar 

  24. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, O. A. Krasnov, Sh. Sh. Maksyutov, T. Machida, M. V. Panchenko, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, Motoki, Sasakawa, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Dynamics of the greenhouse gas concentrations in Western Siberia,” Opt. Atmos. Okeana 32 (9), 777–785 (2019).

    Google Scholar 

  25. A. V. Timokhina, A. S. Prokushkin, A. V. Panov, R. A. Kolosov, N. V. Sidenko, I. Lavrich, and M. Khaimann, “Interannual variability of atmospheric CO2 concentrations over central Siberia from ZOTTO data for 2009–2015,” Rus. Meteorol. Hydrol. 43 (5), 288–294 (2015).

    Article  Google Scholar 

  26. P. Friedlingstein, M. W. Jones, M. O' Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quere, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. K. Goldewijk, J. I. Korsbakken, P. Landschutzer, S. K. Lauvset, N. Lefevre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rodenbeck, R. Seferian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, and S. Zaehle, “Global carbon budget 2019,” Earth Syst. Sci. Data 11 (4), 1783–1838 (2019).

    ADS  Article  Google Scholar 

  27. A. Krasnova, M. Kukumagi, U. Mander, R. Torga, D. Krasnov, S. M. Noe, I. Ostonen, U. Puttsepp, H. Killian, V. Uri, K. Lohmus, J. Sober, and K. Soosaar, “Carbon exchange in a hemiboreal mixed forest in relation to tree species composition,” Agric. For. Meteorol. 275, 11–23 (2019).

    ADS  Article  Google Scholar 

  28. M. Korkiakoski, J.-P. Tuovinen, T. Penttila, S. Sarkkola, P. Ojanen, K. Minkkinen, J. Rainne, T. Laurila, and A. Lohila, “Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting,” Biogeosciences 16 (19), 3703–3723 (2019).

    ADS  Article  Google Scholar 

Download references


This work was carried out within the State Assignment for IAO SB RAS project no. АААА-А17-117021310142-5.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to M. Yu. Arshinov or B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arshinov, M.Y., Belan, B.D., Davydov, D.K. et al. Study of the Spatial Distributions of CO2 and CH4 in the Surface Air Layer over Western Siberia Using a Mobile Platform. Atmos Ocean Opt 33, 661–670 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • atmospheric composition
  • greenhouse gases
  • spatial distribution