Skip to main content

Retrieval of Crosswind Velocity Based on the Analysis of Remote Object Images: Part 3–Experimental Test

Abstract

The passive technique for crosswind speed retrieval from a video series of incoherent images developed in previous works is tested. The technique is based on the visualization of wind-drifted turbulent air inhomogeneities which distort recorded optical images. The results of retrieval of the crosswind speed by the technique suggested are compared with anemometer measurements at paths up to 1 km long.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. U. Zavorotny, “Remote probing of a distant turbulent layer using various spatial filtering methods,” Appl. Opt. 31 (36), 7660 (1992).

    ADS  Article  Google Scholar 

  2. R. B. Holmes, US patent no. 5.469.250 USO05469250A (1995).

  3. M. Belenkii, US patent No. 2010/0128136 A1 (2010).

  4. O. Porat and J. Shapira, “Crosswind sensing from optical-turbulence-induced fluctuations measured by a video camera,” Appl. Opt. 49 (28), 5236 (2010).

    ADS  Article  Google Scholar 

  5. V. V. Dudorov and A. S. Eremina, “Determination of atmospheric turbulent inhomogeneity wind drift from sequence of incoherent images,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92921 (2014).

  6. A. Engel, O. Porat, J. Shapira, and A. Englander, “Experimental evaluation of optical crosswind measurement systems,” Proc. SPIE—Int. Soc. Opt. Eng. 9242, 92421 (2014).

  7. V. V. Dudorov and A. S. Eremina, “Filtration of optical image distortions for retrieving the drift velocity of atmospheric turbulence inhomogeneities,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 96802 (2015).

  8. V. V. Dudorov and A. S. Eremina, “Possibilities of crosswind profiling based on incoherent imaging,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100351 (2016).

  9. A. L. Afanasiev, V. A. Banakh, D. A. Marakasov, and A. P. Rostov, “Method of estimation of the cross-wind velocity from statistics of energy centroids coordinates of binocular images of topographic objects,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 1003512 (2016).

  10. D. A. Marakasov, ”Estimation of mean wind velocity from correlations of centers of gravity shifings for non-coherent sources in the turbulent atmosphere,” Opt. Atmos. Okeana 29 (4), 294–299 (2016).

    Google Scholar 

  11. V. V. Dudorov and A. S. Eremina, “Retrieval of crosswind velocity based on the analysis of remote object images: Part 1—Drift of a thin layer of turbulent inhomogeneities,” Atmos. Ocean. Opt. 30 (5), 422–428 (2017).

    Article  Google Scholar 

  12. V. V. Dudorov and A. S. Eremina, “Retrieval of crosswind velocity based on the analysis of remote object images: Part 2—Drift of turbulent volume,” Atmos. Ocean. Opt. 30 (6), 596–603 (2017).

    Article  Google Scholar 

  13. A. L. Afanasiev, V. A. Banakh, and D. A. Marakasov, “Comparative assessments of the crosswind speed from optical and acoustic measurements in the surface air layer,” Atmos. Ocean. Opt. 31 (1), 43–48 (2018).

    Article  Google Scholar 

  14. A. L. Afanasiev, V. A. Banakh, E. V. Gordeev, D. A. Marakasov, A. A. Sukharev, and A. V. Falits, “Verification of a passive correlation optical crosswind velocity meter in experiments with a Doppler wind lidar,” Atmos. Ocean. Opt. 30 (6), 574–580 (2017).

    Article  Google Scholar 

  15. A. L. Afanas’ev, V. A. Banakh, D. A. Marakasov, V. A. Aksenov, E. V. Shishkin, and Yu. V. Pazii, “Determination of corrections to aiming using a passive optical crosswind speed meter,” Opt. Atmos. Okeana 31 (5), 355–363 (2018).

    Google Scholar 

  16. V. V. Dudorov and A. S. Eremina, “Visualization of the wind drift of turbulent inhomogeneities,” Proc. SPIE—Int. Soc. Opt. Eng. 10787, 1078708 (2018).

  17. V. V. Dudorov, A. S. Eremina, and Yu. T. Mikhailov, “Estimation of the crosswind along surface paths from a video sequence of distant objects: Comparison with contact measurements,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108 332 (2018).

  18. V. V. Dudorov and A. S. Eremina, “The influence of receiving optical system parameters on the accuracy of determining the wind speed by the correlation method,” Proc. SPIE—Int. Soc. Opt. Eng. 11 208, 112 082 (2019).

Download references

Funding

The work was partly supported by the Russian Science Foundation (project no. 18-79-00179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dudorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, A.L., Dudorov, V.V., Mikhailov, Y.T. et al. Retrieval of Crosswind Velocity Based on the Analysis of Remote Object Images: Part 3–Experimental Test. Atmos Ocean Opt 33, 690–695 (2020). https://doi.org/10.1134/S1024856020060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060020

Keywords:

  • wind speed
  • turbulent atmosphere
  • incoherent image