Skip to main content

Results of Studying Physicochemical Characteristics of Atmospheric Aerosol in the 71st Cruise of RV Akademik Mstislav Keldysh

Abstract

In summer 2018 along the route of the 71st cruise of RV Akademik Mstislav Keldysh in the North Atlantic we carried out the measurements of such atmospheric aerosol characteristics as aerosol optical depth, near-surface aerosol and black carbon concentrations, content of chemical elements in aerosol samples, and organic and elemental carbon, as well as the isotopic composition of black carbon. It is shown that the average values of most characteristics decrease severalfold during passage from the Baltic Sea to the North Atlantic (57°–60° N), and then to the Norwegian Sea. For instance, the average black carbon concentration decreased from 83 to 29 ng/m3. Episodic impact of continental aerosol was noted even in remote regions of ocean. Outflow of smokes from forest fires in the north of Canada to the region of measurements (southward of Greenland) had the strongest effect on aerosol characteristics. The average concentrations of chemical elements in aerosol composition over the North Atlantic were several times larger than in the Arctic region, and smaller than in the background region of Siberia.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the United Nations Intergovernmental Panel on Climate Change (IPCC). Chapter 7, Clouds and Aerosols. http://www.climatechange2013.org/images/report/WG1AR5_Chapter07_ FINAL.pdf. Cited January 15, 2020.

  2. 2

    K. Ya. Kondrat’ev, N. I. Moskalenko, and D. V. Pozdnyakov, Atmospheric Aerosols (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  3. 3

    A. P. Lisitsyn, “Modern ideas about sludging in oceans and seas. Ocean as a natural recorder of interaction between geospheres,” in World Ocean. Vol. 2. Ocean Physics, Chemistry, and Biology. Sludging in the Ocean and Interaction of Geospheres (Nauchnyi mir, Moscow, 2014), p. 331–571 [in Russian].

  4. 4

    V. P. Shevchenko, A. A. Vinogradova, A. P. Lisitsyn, A. N. Navigatskii, and N. V. Goryunova, “Atmospheric aerosols as a source of sedimentation and pollution in the Arctic Ocean,” in The System of the Laptev Sea and Adjacent Arctic seas: Status and History (Izd-vo Mosk. Un-ta, Moscow, 2009), p. 150-172 [in Russian].

  5. 5

    S. M. Sakerin, D. M. Kabanov, V. V. Polkin, V. F. Radionov, B. N. Holben, and A. Smirnov, “Variations in aerosol optical and microphysical characteristics along the route of Russian Antarctic expeditions in the East Atlantic,” Atmos. Ocean. Opt. 30 (1), 89–102 (2017).

    Article  Google Scholar 

  6. 6

    O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Atmospheric Transparency in the IR and Visible (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  7. 7

    C. Tomasi, A. A. Kokhanovsky, A. Lupi, C. Ritter, A. Smirnov, M. Mazzola, R. S. Stone, C. Lanconelli, V. Vitale, B. N. Holben, S. Nyeki, C. Wehrli, V. Altonen, G. de Leeuw, E. Rodriguez, A. B. Herber, K. Stebel, A. Stohl, N. T. O’Neill, V. F. Radionov, T. Zielinski, T. Petelski, S. M. Sakerin, D. M. Kabanov, Y. Xue, L. Mei, L. Istomina, R. Wagener, B. McArthur, P. S. Sobolewski, J. Butler, R. Kivi, Y. Courcoux, P. Larouche, S. Broccardo, and S. J. Piketh, “Aerosol remote sensing in polar regions,” Earth-Sci. Rev. 140, 108–157 (2015).

    ADS  Article  Google Scholar 

  8. 8

    F. Cavalli, M.C. Facchini, S. Decesari, M. Mircea, L. Emblico, S. Fuzzi, D. Ceburnis, Y. J. Yoon, C. D. O’Dowd, J.-P. Putaud, and A. Dell’Acqua, “Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic,” J. Geophys. Res. D. 109 (2004). https://doi.org/10.1029/2004JD005137

  9. 9

    R. S. Stone, S. Sharma, A. Herber, K. Eleftheriadis, and D. W. Nelson, “A characterization of arctic aerosols on the basis of aerosol optical depth and black carbon measurements,” Elementa: Sci. Anthropocene 2 (2014). https://doi.org/10.12952/journal.elementa.000027

  10. 10

    D. K. Singh, K. Kawamura, A. Yanase, and L. A. Barrie, “Distributions of polycyclic aromatic hydrocarbons, aromatic ketones, carboxylic acids, and trace metals in arctic aerosols: Long-range atmospheric transport, photochemical degradation/production at polar sunrise,” Environ. Sci. Technol. 51, 8992 (2017).

    ADS  Article  Google Scholar 

  11. 11

    K. Eleftheriadis, S. Vratolis, and S. Nyeki, “Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Alesund, Svalbard from 1998–2007,” Geophys. Rev. Lett. 36 (2009). https://doi.org/10.1029/2008GL035741

  12. 12

    A. Massling, I. E. Nielsen, D. Kristensen, J. H. Christensen, L. L. Sorensen, B. Jensen, Q. T. Nguyen, J. K. Nojgaard, M. Glasius, and H. Skov, “Atmospheric black carbon and sulfate concentrations in northeast Greenland,” Atmos. Chem. Phys. 15 (16), 9681–9692 (2015).

    ADS  Article  Google Scholar 

  13. 13

    A. A. Vinogradova and T. Ya. Ponomareva, “Atmospheric transport of anthropogenic impurities to the Russian Arctic (1986–2010),” Atmos. Ocean. Opt. 25 (6), 414–422 (2012).

    Article  Google Scholar 

  14. 14

    A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of Black Carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).

    Article  Google Scholar 

  15. 15

    C. Leck, E. K. Bigg, D. S. Covert, J. Heintzenberg, W. Maenhaut, E. D. Nilsson, and A. Wiedensohler, “Overview of the atmospheric research program during the International Arctic Ocean Expedition of 1991 (IAOE-91) and its scientific results,” Tellus 48B, 136–155 (1996).

    ADS  Article  Google Scholar 

  16. 16

    C. D. O’Dowd, M. H. Smith, and S. G. Jennings, “Submicron aerosol, radon and soot carbon characteristics over the northeast Atlantic,” J. Geophys. Res. 98, 1123–1135 (1993).

    ADS  Article  Google Scholar 

  17. 17

    Z. Xie, J. D. Blum, S. Utsunomiya, R. C. Ewing, and X. Wang, “Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean,” J. Geophys. Res. D 112 (2007). https://doi.org/10.1029/2006JD007247

  18. 18

    A. Stohl, Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky, “Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions,” Atmos. Chem. Phys. 13, 8833–8855 (2013).

    ADS  Article  Google Scholar 

  19. 19

    O. B. Popovicheva, N. Evangeliou, K. Eleftheriadis, A. C. Kalogridis, N. Sitnikov, S. Eckhard, and A. Stohl, “Black carbon sources constrained by observations in the Russian high Arctic,” Environ. Sci. Technol. 51 (7), 3871–3879 (2017).

    ADS  Article  Google Scholar 

  20. 20

    V. P. Schevchenko, V. M. Kopeikin, N. Evangeliou, A. P. Lisitzin, A. N. Novigatsky, N. V. Pankratova, D. P. Starodymova, A. Stohl, and R. Thomson, “Atmospheric black carbon over the north Atlantic and Russian Arctic seas in summer-autumn time,” Chem. Sustainable Dev. 24 (4), 441–446. (2016).

    Google Scholar 

  21. 21

    V. P. Shevchenko, V. M. Kopeikin, A. N. Novigatskii, and G. V. Malafeev, “Black carbon in the marine boundary layer over the North Atlantic and seas of the Russian Arctic in June–September 2017,” Okeanologiya 59 (5), 771–776 (2019). https://doi.org/10.31857/S0030-1574595771-776

    ADS  Article  Google Scholar 

  22. 22

    C. M. Marsay, D. Kadko, W. M. Landing, P. L. Morton, B. A. Summers, and C. S. Buck, “Concentrations, provenance and flux of aerosol trace elements during US GEOTRACES Western Arctic Cruise GN01,” Chem. Geology 502, 1–14 (2018).

    ADS  Article  Google Scholar 

  23. 23

    S. M. Sakerin, P. N. Zenkova, O. N. Izosimova, D. M. Kabanov, V. V. Pol’kin, V. F. Radionov, G. V. Malafeev, and V. P. Shevchenko, “Measurements of aerosol optical and microphysical characteristics in 2018 expeditions onboard RV “Akademik Mstislav Keldysh” and RV “Akademik Tryoshnikov”,” Proc. SPIE—Int. Soc. Opt. Eng. 11208 (2019). https://doi.org/10.1117/12.2539793

  24. 24

    S. A. Popova, G. V. Simonova, V. I. Makarov, D. A. Kalashnikova, P. N. Zenkova, A. P. Lisitzin, and A. N. Novigatsky, “Variations of the carbon isotope composition and of organic and elemental carbon concentrations of North Atlantic aerosols,” Proc. SPIE 11208 (2019). https://doi.org/10.1117/12.2538888

  25. 25

    S. M. Sakerin, A. A. Bobrikov, O. A. Bukin, L. P. Golobokova, Vas. V. Polkin, Vik. V. Polkin, K. A. Shmirko, D. M. Kabanov, T. V. Khodzher, N. A. Onischuk, A. N. Pavlov, V. L. Potemkin, and V. F. Radionov, “On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along Northern Sea Route,” Atmos. Chem. Phys. 15 (21), 12413–12443 (2015).

    ADS  Article  Google Scholar 

  26. 26

    S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, D. A. Kalashnikova, V. S. Kozlov, I. A. Kruglinsky, V. I. Makarov, A. P. Makshtas, S. A. Popova, V. F. Radionov, G. V. Simonova, Yu. S. Turchinovich, T. V. Khodzher, O. I. Khuriganowa, O. V. Chankina, and D. G. Chernov, “Measurements of physicochemical characteristics of atmospheric aerosol at research station Ice Base Cape Baranov in 2018,” Atmos. Ocean. Opt. 32 (5), 511–520 (2019).

    Article  Google Scholar 

  27. 27

    A. T. Lebedev, Mass-Spectrometry for the Analysis of Environmental Objects (Tefnosfera, Moscow, 2013) [in Russian].

    Google Scholar 

  28. 28

    V. I. Makarov, K. P. Koutsenogii, and P. K. Koutsenogii, “Daily and seasonal changes of organic and inorganic carbon content in atmospheric aerosol Novosibirsk region,” J. Aer. Sci. 30, S255–S256 (1999).

    ADS  Article  Google Scholar 

  29. 29

    P. A. Piminov, G. N. Baranov, A. V. Bogomyagkov, D. E. Berkaev, V. M. Borin, V. L. Dorokhov, S. E. Karnaev, V. A. Kiselev, E. B. Levichev, O. I. Meshkov, S. I. Mishnev, S. A. Nikitin, I. B. Nikolaev, S. V. Sinyatkin, P. D. Vobly, K. V. Zolotarev, and A. N. Zhuravlev, “Synchrotron radiation research and application at VEPP-4,” Phys. Proc. 84, 19–26 (2016).

    ADS  Article  Google Scholar 

  30. 30

    S. M. Sakerin, S. Yu. Andreev, D. M. Kabanov, V. V. Pol’kin, Yu. S. Turchinovich, and D. G. Chernov, “Database of aerosol expedition studies in marine and polar regions,” Proc. SPIE—Int. Soc. Opt. Eng. 11208. Part 2 (2019). https://doi.org/10.1117/12.2539891

  31. 31

    S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, V. S. Kozlov, V. V. Pol’kin, V. F. Radionov, and D. G. Chernov, “Comparison of average aerosol characteristics in neighboring Arctic regions,” Atmos. Ocean. Opt. 32 (1), 33–40 (2019).

    Article  Google Scholar 

  32. 32

    https://tropo.gsfc.nasa.gov/aeronet/IMAGES/Y15/M07/ ktraj_tlk_7bck15071012.ps210001.gif. Cited December 20, 2019.

  33. 33

    J.-F. Lamarque, T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest, J. Van Aardenne, O. R. Cooper, M. Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi, and D. P. Vuuren, “Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application,” Atmos. Chem. Phys. 10, 7017–7039 (2010).

    ADS  Article  Google Scholar 

  34. 34

    O. Popovicheva, E. Diapouli, A. Makshtas, N. Shonija, M. Manousakas, D. Saraga, T. Uttal, and K. Eleftheriadis, “East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi,” Sci. Total Environ. 655, 924–938 (2019).

    ADS  Article  Google Scholar 

  35. 35

    A. Massling, I. E. Nielsen, D. Kristensen, J. H. Christensen, L. L. Sorensen, B. Jensen, Q. T. Nguyen, J. K. Nojgaard, M. Glasius, and H. Skov, “Atmospheric black carbon and sulfate concentrations in northeast Greenland,” Atmos. Chem. Phys. 15, 9681–9692 (2015).

    ADS  Article  Google Scholar 

  36. 36

    D. Widory, “Combustibles, fuels and their combustion products: A view through carbon isotopes,” Combust. Theory Modell., UK, 831–841 (2006). https://doi.org/10.1080/13647830600720264

    Book  MATH  Google Scholar 

  37. 37

    G. Simonova, Yu. Volkov, V. Kozlov, V. Shmargunov, and D. Kalashnikova, “Atmospheric air pollution studies using the isotope mass-spectrometry,” in Proc. of the 18th Intern. Multidisciplinary Scientific Geoconference SGEM 2018 (Bulgaria, 2018), p. 343–348. https://doi.org/10.5593/sgem2018/4.2.18

  38. 38

    G. O. Mouteva, C. I. Czimczik, S. M. Fahrni, E. B. Wiggins, B. M. Rogers, S. Veraverbeke, X. Xu, G. M. Santos, J. Henderson, C. E. Miller, and J. T. Randerson, “Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils,” Global Biogeochem. Cycles 29 (11), 1977–2000 (2015).

    ADS  Article  Google Scholar 

  39. 39

    S. J. Doherty, S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt, “Light-absorbing impurities in arctic snow,” Atmos. Chem. Phys. 10 (23), 11647–11680 (2010).

    ADS  Article  Google Scholar 

  40. 40

    J. R. McConnell, R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. Kahl, “20th-century industrial black carbon emissions altered arctic climate forcing,” Science 317 (5843) (2007).

Download references

ACKNOWLEDGMENTS

The authors thank V. S. Kozlov and V. P. Shmargunov for preparation and testing of instrumentation for expedition measurements.

Funding

The elemental composition of aerosol was determined using instrumentation owned by the Center for Collective Use at the Siberian Synchrotron and Terahertz Radiation Center on the basis of the Unique Scientific Installation “Complex of electron-positron colliders VEPP-4 –VEPP-2000” in the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, supported by the project RFMEFI62119X0022. This work was performed under State Assignment for the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, and the Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Sakerin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakerin, S.M., Zenkova, P.N., Kabanov, D.M. et al. Results of Studying Physicochemical Characteristics of Atmospheric Aerosol in the 71st Cruise of RV Akademik Mstislav Keldysh . Atmos Ocean Opt 33, 470–479 (2020). https://doi.org/10.1134/S1024856020050164

Download citation

Keywords:

  • atmosphere of the North Atlantic
  • aerosol and black carbon
  • organic and elemental carbon contents
  • chemical and isotopic compositions