Skip to main content

Laser Radiation Absorption in the Atmosphere of Titan


General formulas for the extinction coefficient of laser radiation in an atmosphere are derived. They take into account nonlinear effects and significantly differ from the linear optics results. Specific calculations are carried out for the atmosphere of Titan. It is shown that consideration of a close-to-real altitude dependence of the concentration of atmospheric gases leads to the altitude dependence of the extinction coefficient being significantly different from the results obtained using the barometric formula. The extinction coefficient in the atmosphere of Triton is also estimated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. G. F. Lindal, G. E. Wood, H. B. Hotz, D. N. Sweetnam, V. R. Eshleman, and G. L. Tyler, “The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements,” Icarus 53 (2), 348–363 (1983).

    ADS  Article  Google Scholar 

  2. S. M. Horst, “Titan’s atmosphere and climate,” J. Geophys. Res. Planets 122 (3), 432–482 (2017).

    ADS  Article  Google Scholar 

  3. T. Cours, D. Cordier, B. Seignovert, L. Maltagliati, and L. Biennier, “The 3.4 μm absorption in Titan’s stratosphere: Contribution of ethane, propane, butane and complex hydrogenated organics,” Icarus 339, 113571 (2020).

    Article  Google Scholar 

  4. Eyes on Titan: Dragonfly team shapes science instrument payload. Cited March 6, 2020.

  5. P. Babilotte, “Two color pump-probe dichroism and birefringence measurements in atmospheric molecules,” Atmos. Oceanic Opt. 31 (4), 346–357 (2018).

    Article  Google Scholar 

  6. A. S. Kornev and B. A. Zon, “Tunneling ionization of vibrationally excited nitrogen molecules,” Phys. Rev. A: 92 (3), 033420 (2015).

    ADS  Article  Google Scholar 

  7. I. V. Kopytin, A. S. Kornev, and B. A. Zon, “Tunnel ionization of diatomic atmospheric gases (N2, O2) by laser radiation,” Laser Phys. 29 (9), 095301 (2019).

    ADS  Article  Google Scholar 

  8. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” JETP 20 (5), 1307 (1965).

    Google Scholar 

  9. Yu. N. Demkov and G. F. Drukarev, “Decay and polarizability of an negative ion in the electric field,” Zh. Exp. Teor. Fiz. 47 (3), 918–924 (1964).

    Google Scholar 

  10. Ya. B. Zel’dovich, N. L. Manakov, and L. P. Rapoport, “Quasienergy of a system subjected to a periodic external disturbance,” Phys.-Uspekhi 18 (7), 920–921 (1975).

    ADS  Article  Google Scholar 

  11. N. L. Manakov and L. P. Rapoport, “Particle with low binding energy in a circularly polarized field,” JETP 42 (3), 430 (1975).

    ADS  Google Scholar 

  12. N. L. Manakov and A. G. Fainshtein, “Decay of a weakly bound level in a monochromatic field,” JETP 52 (3), 382 1980.

    ADS  Google Scholar 

  13. I. L Fabelinskii, Molecular Scattering of Light (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  14. X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A: 66 (3), 033402 (2002).

    ADS  Article  Google Scholar 

  15. L. B. Madsen, O. I. Tolstikhin, and T. Morishita, “Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules,” Phys. Rev. A: 85 (5), 053404 (2012).

    ADS  Article  Google Scholar 

  16. O. I. Tolstikhin, H. J. Worner, and T. Morishita, “Effect of nuclear motion on tunneling ionization rates of molecules,” Phys. Rev. A: 87 (4), 041401 (2013).

    ADS  Article  Google Scholar 

  17. B. A. Zon, “Born–Oppenheimer approximation for molecules in a strong light field,” Chem. Phys. Lett. 262, 744–746 (1996).

    ADS  Article  Google Scholar 

  18. A. A. Radtsig and B. M. Smirnov, Handbook on Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  19. J. Kobus, “A finite difference hartree-fock program for atoms and diatomic molecules,” Comput. Phys. Commun. 184 (3), 799–811 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  20. Encyclopedia of the Solar System, Ed. by L.-A. McFadden, P.R. Weissman, and T.V. Johnson (Academic Press, Amsterdam, Boston, 2007).

    Google Scholar 

  21. F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).

    ADS  Article  Google Scholar 

  22. S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 (2), 123–140 (2013).

    ADS  Article  Google Scholar 

  23. G. Steinmeyer and C. Bree, “Extending filamentation,” Nat. Photon 8, 271–273 (2014).

    ADS  Article  Google Scholar 

  24. M. Sheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photon 8, 297–301 (2014).

    ADS  Article  Google Scholar 

  25. V. Vaicaitis, R. Butkus, O. Balachninaite, U. Morgner, and I. Babuskin, “Diffraction-enhanced femtosecond white-light filaments in air,” Appl. Phys. B 124, 221 (2018).

    ADS  Article  Google Scholar 

Download references


The calculations were performed with the use of the high-performance computer cluster of Voronezh State University.


The work was supported by the Russian Foundation for Basic Research and the Czech Science Foundation (project no. 19-52-26 006) in the part of calculation of the imaginary part of the dynamic polarizabilities (\(\bar {\Gamma }(F)\)) and the Russian Science Foundation (grant No. 19-12-00095) in the part of quantum-chemical calculations.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to O. P. Romashenko, A. S. Kornev or B. A. Zon.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romashenko, O.P., Kornev, A.S. & Zon, B.A. Laser Radiation Absorption in the Atmosphere of Titan. Atmos Ocean Opt 33, 439–442 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Titan’s atmosphere
  • laser radiation
  • extinction coefficient
  • tunnel ionization