Skip to main content
Log in

Optical Manipulation of Micro- and Nanoobjects Based on Structured Mesoscale Particles: a Brief Review

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Spatial resolution of conventional optics, which is necessary for nondestructive trapping of microobjects, is limited by diffraction to a value equal to half of the radiation wavelength. Despite this limitation, use of optical methods is one of the main directions in biological and biomedical researches because only these methods have a minimal impact on living organisms. The rapid advance in this area is largely owing to the development of new optical technologies and the considerable advance in mesoscale photonics, which has allowed researchers to develop techniques for controlling structured beams for optical traps. In this work, we consider some recent trends in the field of optical manipulation based on mesoscale dielectric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. Lebedew, “Untersuchungen liber die Dnickkräfte des Lichtes,” Ann. Phys. 6 (4), 433–458 (1901).

    Article  Google Scholar 

  2. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects,” Light: Sci. & Appl. 6 (2017). https://doi.org/10.1038/lsa.2017.39

  3. P. Rodriguez-Sevilla, L. Labrador-Paez, D. Jaque, and P. Haro-Gonzalez, “Optical trapping for biosensing: Materials and applications,” J. Mater. Chem. B 5, 9085–9101 (2017).

    Article  Google Scholar 

  4. D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: Fundamentals, advances and prospects,” Nanophotonics 8 (7), 1227–1245 (2019).

    Article  Google Scholar 

  5. E. H. K. Stelzer, “Beyond the diffraction limit?,” Nature 417, 806–807 (2002).

    Article  ADS  Google Scholar 

  6. H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzman, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19, 013001 (2017).

    Article  ADS  Google Scholar 

  7. E. Brasselet, “Structured light: Optomechanical tomography,” Nature Phys. 12 (8), 725 (2016).

    Article  ADS  Google Scholar 

  8. H. Shi and M. Bhattacharya, “Optomechanics based on angular momentum exchange between light and matter,” J. Phys. B 49, 153001 (2016).

    Article  ADS  Google Scholar 

  9. S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical "tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107 (20), Art. 203602 (2011).

    Article  ADS  Google Scholar 

  10. A. Dogariu, S. Sukhov, and J. Saenz, “Optically induced "negative forces”," Nature Photonics 7 (1), 24–27 (2013).

    Article  ADS  Google Scholar 

  11. O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a "tractor beam”," Nature Photonics 7 (2), 123–127 (2013).

    Article  ADS  Google Scholar 

  12. A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).

    Article  Google Scholar 

  13. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).

    Article  ADS  Google Scholar 

  14. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Comparative analysis of key parameters of photonic nanojets from axisymmetric nonspherical microparticles,” Atmos. Ocean. Opt. 32 (1), 41–44 (2019).

    Article  Google Scholar 

  15. B. Luk’yanchuk, R. Paniagua-Dominguez, I. V. Minin, O. V. Minin, and Z. Wang, “Refractive index less than two: Photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7, 1820–1847 (2017).

    Article  ADS  Google Scholar 

  16. Z. Wang, B. Luk’yanchuk, L. Yue, R. Paniagua-Dominguez, B. Yan, J. Monks, O. V. Minin, I. V. Minin, S. Huang, and A. Fedyanin, “High order Fano resonances and giant magnetic fields in dielectric microspheres,” Sci. Rep. 9 (20293) (2019).

  17. B. Wang, L. Shen, and S. He, “Superlens formed by a one-dimensional dielectric photonic crystal,” J. Opt. Soc. Am. B 25, 391–395 (2008).

    Article  ADS  Google Scholar 

  18. I. V. Minin, O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, “Focusing properties of two types of diffractive photonic crystal lens,” Opt. Memory Neural Networks 17, 244–248 (2008).

    Article  Google Scholar 

  19. F. Gaufillet and E. Akmansoy, “Design and experimental evidence of a flat graded-index photonic crystal lens,” J. Appl. Phys. 14 (2013). https://doi.org/10.1063/1.4817368

  20. I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, “FDTD analysis of a flat diffractive optics with sub-Reyleigh limit resolution in MM/THz waveband,” in Digest of the Joint 31st Intern. Conf. on Infrared and Millimeter Waves and 14th Inter. Conf. on Terahertz Electronics (China. September, Shanghai, 2006).

  21. I. V. Minin and O. V. Minin, “3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction,” Chin. Opt. Lett. 12 (6) (2014).

  22. Y. Zhu, S. Zhou, Z. Wang, Y. Yu, W. Yuan, and W. Liu, “Investigation on super-resolution focusing performance of a TE-polarized nanoslit-based two-dimensional lens,” Nanomaterials 10 (1) (2020).

  23. K. R. Chen, “Focusing of light beyond the diffraction limit of half the wavelength,” Opt. Lett. 35, 3763–3765 (2010).

    Article  ADS  Google Scholar 

  24. S. Ishii, A. V. Kildishev, V. M. Shalaev, and V. P. Drachev, “Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals,” Laser Phys. Lett. 8, 828–832 (2011).

    Article  ADS  Google Scholar 

  25. R. G. Mote, O. V. Minin, and I. V. Minin, “Focusing behavior of 2-dimensional plasmonic conical zone plate,” Opt. Quantum Electron. 49 (8), 271–275 (2017).

    Article  Google Scholar 

  26. L. Jin, Q. Y. Zhu, Y. Q. Fu, and W. X. Yu, “Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations,” Chin. Phys. B 22 (10), 104101 (2013).

    Article  ADS  Google Scholar 

  27. Y. H. Li, Y. Q. Fu, O. V. Minin, and I. V. Minin, “Ultrasharp nanofocusing of graded index photonic crystalbased lenses perforated with optimized single defect,” Opt. Mater. Express 6, 2628–2636 (2016).

    Article  ADS  Google Scholar 

  28. Y. Cao, Z. Liu, O. V. Minin, and I. V. Minin, “Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres,” Nanomaterials 9 (2) (2019). https://doi.org/10.3390/nano9020186

  29. I. V. Minin, O. V. Minin, Y. Cao, Z. Liu, Y. Geints, and A. Karabchevsky, “Optical vacuum cleaner by optomechanical manipulation of nanoparticles using nanostructured mesoscale dielectric cuboid,” Sci. Rep. 9 (12748) (2019).

  30. C.-S. Wang and Y. Otani, “Removal of nanoparticles from gas streams by fibrous filters: A review,” Indust. Engin. Chem. Res. 52 (1), 5–17 (2013).

    Article  Google Scholar 

  31. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip. 11, 995–1009 (2011).

    Article  Google Scholar 

  32. Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light: Sci. Appl., No. 5 (2016).

  33. X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines, No. 11, 114 (2020).

    Article  Google Scholar 

  34. Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C.-W. Qiu, and B. Li, “Living nanospear for near-field optical probing,” ACS Nano 12 (11), 10703–10711 (2018).

    Article  Google Scholar 

  35. I. V. Minin and O. V. Minin, Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit (Springer, 2016).

    Book  Google Scholar 

  36. L. Yue, O. V. Minin, Z. Wang, J. Monks, A. Shalin, and I. V. Minin, “Photonic hook: A new curved light beam,” Opt. Lett. 43, 771–774 (2018).

    Article  ADS  Google Scholar 

  37. A. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. Sukhov, and A. Shalin, “Photonic hook based optomechanical nanoparticle manipulator,” Sci. Rep. 8 (2029) (2018).

  38. I. V. Minin, O. V. Minin, G. Katyba, N. Chernomyrdin, V. Kurlov, K. Zaytsev, L. Yue, Z. Wang, and D. Christodoulides, “Experimental observation of a photonic hook,” Appl. Phys. Lett. 114, 031105 (2019).

    Article  ADS  Google Scholar 

  39. K. Dholakia and G. Bruce, “Optical hooks,” Nat. Photonics 13, 229–230 (2019).

    Article  ADS  Google Scholar 

  40. I. V. Minin, O. V. Minin, D. S. Ponomarev, and I. A. Glinskiy, “Photonic hook plasmons: A new curved surface wave,” Ann. Phys. 530 (12), 1800359 (2018).

    Article  Google Scholar 

  41. C. Rubio, D. Tarrazo-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Acoustical hooks: A new subwavelength self-bending beam,” Results Phys. 16, 102921 (2020).

    Article  Google Scholar 

  42. E. Xing, H. Gao, J. Rong, S. Khew, H. Liu, C. Tong, and M. Hong, “Dynamically tunable multi-lobe laser generation via multifocal curved beam,” Opt. Express 26 (23), 30944–30951 (2018).

    Article  ADS  Google Scholar 

  43. P. Yang, P. Twardowski, G. Y. Duo, J. Fontaine, and S. Lecler, “Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder,” Opt. Express 26 (4), 3723–3731 (2018).

    Article  ADS  Google Scholar 

  44. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27 (2), 1310–1325 (2019).

    Article  ADS  Google Scholar 

  45. I. V. Minin and O. V. Minin, “Subwavelength self-bending structured light beams,” in Proc. of the Fourth Russian-Belarusian Workshop “Carbon Nanostructures and their Electromagnetic Properties” (Tomsk, 2019), p. 52–57.

  46. I. V. Minin and O. V. Minin, “Dielectric particle-based strategy to design a new self-bending subwavelength structured light beams,” in Proc. the 14th Intern. Forum on Strategic Technology (IFOST 2019) (TPU Publishing House, Tomsk, 2019), p. 23.

  47. G. Gu, L. Shao, J. Song, J. Qu, K. Zheng, X. Shen, Z. Peng, J. Hu, X. Chen, M. Chen, and Q. Wu, “Photonic hooks from Janus microcylinders,” Opt. Express 27 (26), 37771–37780 (2019).

    Article  ADS  Google Scholar 

  48. X. Shen, G. Gu, L. Shao, Z. Peng, J. Hu, S. Bandyopadhyay, Y. Liu, J. Jiang, and M. Chen, “Twin photonic hook generated by twin-ellipse microcylinder,” IEEE Photonics (2020). https://doi.org/10.1109/JPHOT.2020.2966782

    Book  Google Scholar 

  49. X. Ma, Y. Guo, M. Pu, J. J. Jin, P. Gao, X. Li, and X. Luo, “Tunable optical hooks in the visible band based on ultra-thin metalenses,” Ann. Phys. (New York), 1900396 (2019).

  50. A. S. Ang, I. V. Minin, O. V. Minin, S. V. Sukhov, A. Shalin, and A. Karabchevsky, “Low-contrast photonic hook manipulator for cellular differentiation,” Proc. of the 9th Intern. Conf. on Metamaterials, Photonic crystals and Plasmonics, Marseille, France, June,2018. P. 7–8.

  51. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).

    Article  ADS  Google Scholar 

  52. H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Opt. Lett. 41 (7), 1652–1655 (2016).

    Article  ADS  Google Scholar 

  53. I. V. Minin, O. V. Minin, V. Pena, and M. Beruete, “Subwavelength, standing-wave optical trap based on photonic jets,” Quantum Electron. 46 (6), 555–557 (2016).

    Article  ADS  Google Scholar 

  54. Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10 (6), 5800–5808 (2016).

    Article  Google Scholar 

  55. Yu. E. Geints and A. A. Zemlyanov, “Metalens optical 3D-trapping and manipulating of nanoparticles,” J. Opt. 20, 075102 (2018).

    ADS  Google Scholar 

  56. H. S. Patel and S. K. Majumder, “Photonic nanojet: Generation, manipulation and applications,” RRCAT Newslett. 31 (2), 24–33 (2018).

    Google Scholar 

  57. A. A. R. Neves, “Photonic nanojets in optical tweezers,” J. Quant. Spectrosc. Radiat. Transfer 162, 122–132 (2015).

    Article  ADS  Google Scholar 

  58. B. Du, J. Xia, J. Wu, J. Zhao, and H. Zhang, “Switchable photonic nanojet by electro-switching nematic liquid crystals,” Nanomaterials 9 (1), 72 (2019).

    Article  Google Scholar 

  59. J. Zhu and L. L. Goddard, “All-dielectric concentration of electromagnetic fields at the nanoscale: The role of photonic nanojets,” Nanoscale Adv. 1 (12), 4615–4643 (2019).

    Article  ADS  Google Scholar 

  60. R. Chen, J. Lin, P. Jin, M. Cada, and Y. Ma, “Photonic nanojet beam shaping by illumination polarization engineering,” Opt. Commun., No. 456, 124 593 (2020).

  61. O. V. Minin, I. V. Minin, and N. Kharitoshin, “Microcubes aided photonic jet scalpel tips for potential use in ultraprecise laser surgery,” in Proc.2015Intern. Conf. on Biomedical Engineering and Computational Technologies (SIBIRCON), Novosibirsk, Russia, October 2015. P. 18–21.

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 20-57-S52001) (I.V. Minin, O.V. Minin), Competitiveness Enhancement Program of Tomsk Polytechnic University, Tomsk State University Mendeleev Fund Program, and State Contract for the Institute of Atmospheric Optics (Yu.E. Geints, E.K. Panina).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Geints or A. Karabchevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minin, I.V., Minin, O.V., Geints, Y.E. et al. Optical Manipulation of Micro- and Nanoobjects Based on Structured Mesoscale Particles: a Brief Review. Atmos Ocean Opt 33, 464–469 (2020). https://doi.org/10.1134/S1024856020050115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020050115

Keywords:

Navigation