Abstract
Spatial resolution of conventional optics, which is necessary for nondestructive trapping of microobjects, is limited by diffraction to a value equal to half of the radiation wavelength. Despite this limitation, use of optical methods is one of the main directions in biological and biomedical researches because only these methods have a minimal impact on living organisms. The rapid advance in this area is largely owing to the development of new optical technologies and the considerable advance in mesoscale photonics, which has allowed researchers to develop techniques for controlling structured beams for optical traps. In this work, we consider some recent trends in the field of optical manipulation based on mesoscale dielectric particles.
Similar content being viewed by others
REFERENCES
P. Lebedew, “Untersuchungen liber die Dnickkräfte des Lichtes,” Ann. Phys. 6 (4), 433–458 (1901).
D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects,” Light: Sci. & Appl. 6 (2017). https://doi.org/10.1038/lsa.2017.39
P. Rodriguez-Sevilla, L. Labrador-Paez, D. Jaque, and P. Haro-Gonzalez, “Optical trapping for biosensing: Materials and applications,” J. Mater. Chem. B 5, 9085–9101 (2017).
D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: Fundamentals, advances and prospects,” Nanophotonics 8 (7), 1227–1245 (2019).
E. H. K. Stelzer, “Beyond the diffraction limit?,” Nature 417, 806–807 (2002).
H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzman, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19, 013001 (2017).
E. Brasselet, “Structured light: Optomechanical tomography,” Nature Phys. 12 (8), 725 (2016).
H. Shi and M. Bhattacharya, “Optomechanics based on angular momentum exchange between light and matter,” J. Phys. B 49, 153001 (2016).
S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical "tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107 (20), Art. 203602 (2011).
A. Dogariu, S. Sukhov, and J. Saenz, “Optically induced "negative forces”," Nature Photonics 7 (1), 24–27 (2013).
O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a "tractor beam”," Nature Photonics 7 (2), 123–127 (2013).
A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Comparative analysis of key parameters of photonic nanojets from axisymmetric nonspherical microparticles,” Atmos. Ocean. Opt. 32 (1), 41–44 (2019).
B. Luk’yanchuk, R. Paniagua-Dominguez, I. V. Minin, O. V. Minin, and Z. Wang, “Refractive index less than two: Photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7, 1820–1847 (2017).
Z. Wang, B. Luk’yanchuk, L. Yue, R. Paniagua-Dominguez, B. Yan, J. Monks, O. V. Minin, I. V. Minin, S. Huang, and A. Fedyanin, “High order Fano resonances and giant magnetic fields in dielectric microspheres,” Sci. Rep. 9 (20293) (2019).
B. Wang, L. Shen, and S. He, “Superlens formed by a one-dimensional dielectric photonic crystal,” J. Opt. Soc. Am. B 25, 391–395 (2008).
I. V. Minin, O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, “Focusing properties of two types of diffractive photonic crystal lens,” Opt. Memory Neural Networks 17, 244–248 (2008).
F. Gaufillet and E. Akmansoy, “Design and experimental evidence of a flat graded-index photonic crystal lens,” J. Appl. Phys. 14 (2013). https://doi.org/10.1063/1.4817368
I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, “FDTD analysis of a flat diffractive optics with sub-Reyleigh limit resolution in MM/THz waveband,” in Digest of the Joint 31st Intern. Conf. on Infrared and Millimeter Waves and 14th Inter. Conf. on Terahertz Electronics (China. September, Shanghai, 2006).
I. V. Minin and O. V. Minin, “3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction,” Chin. Opt. Lett. 12 (6) (2014).
Y. Zhu, S. Zhou, Z. Wang, Y. Yu, W. Yuan, and W. Liu, “Investigation on super-resolution focusing performance of a TE-polarized nanoslit-based two-dimensional lens,” Nanomaterials 10 (1) (2020).
K. R. Chen, “Focusing of light beyond the diffraction limit of half the wavelength,” Opt. Lett. 35, 3763–3765 (2010).
S. Ishii, A. V. Kildishev, V. M. Shalaev, and V. P. Drachev, “Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals,” Laser Phys. Lett. 8, 828–832 (2011).
R. G. Mote, O. V. Minin, and I. V. Minin, “Focusing behavior of 2-dimensional plasmonic conical zone plate,” Opt. Quantum Electron. 49 (8), 271–275 (2017).
L. Jin, Q. Y. Zhu, Y. Q. Fu, and W. X. Yu, “Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations,” Chin. Phys. B 22 (10), 104101 (2013).
Y. H. Li, Y. Q. Fu, O. V. Minin, and I. V. Minin, “Ultrasharp nanofocusing of graded index photonic crystalbased lenses perforated with optimized single defect,” Opt. Mater. Express 6, 2628–2636 (2016).
Y. Cao, Z. Liu, O. V. Minin, and I. V. Minin, “Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres,” Nanomaterials 9 (2) (2019). https://doi.org/10.3390/nano9020186
I. V. Minin, O. V. Minin, Y. Cao, Z. Liu, Y. Geints, and A. Karabchevsky, “Optical vacuum cleaner by optomechanical manipulation of nanoparticles using nanostructured mesoscale dielectric cuboid,” Sci. Rep. 9 (12748) (2019).
C.-S. Wang and Y. Otani, “Removal of nanoparticles from gas streams by fibrous filters: A review,” Indust. Engin. Chem. Res. 52 (1), 5–17 (2013).
D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip. 11, 995–1009 (2011).
Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light: Sci. Appl., No. 5 (2016).
X. Zhao, N. Zhao, Y. Shi, H. Xin, and B. Li, “Optical fiber tweezers: A versatile tool for optical trapping and manipulation,” Micromachines, No. 11, 114 (2020).
Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C.-W. Qiu, and B. Li, “Living nanospear for near-field optical probing,” ACS Nano 12 (11), 10703–10711 (2018).
I. V. Minin and O. V. Minin, Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit (Springer, 2016).
L. Yue, O. V. Minin, Z. Wang, J. Monks, A. Shalin, and I. V. Minin, “Photonic hook: A new curved light beam,” Opt. Lett. 43, 771–774 (2018).
A. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. Sukhov, and A. Shalin, “Photonic hook based optomechanical nanoparticle manipulator,” Sci. Rep. 8 (2029) (2018).
I. V. Minin, O. V. Minin, G. Katyba, N. Chernomyrdin, V. Kurlov, K. Zaytsev, L. Yue, Z. Wang, and D. Christodoulides, “Experimental observation of a photonic hook,” Appl. Phys. Lett. 114, 031105 (2019).
K. Dholakia and G. Bruce, “Optical hooks,” Nat. Photonics 13, 229–230 (2019).
I. V. Minin, O. V. Minin, D. S. Ponomarev, and I. A. Glinskiy, “Photonic hook plasmons: A new curved surface wave,” Ann. Phys. 530 (12), 1800359 (2018).
C. Rubio, D. Tarrazo-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Acoustical hooks: A new subwavelength self-bending beam,” Results Phys. 16, 102921 (2020).
E. Xing, H. Gao, J. Rong, S. Khew, H. Liu, C. Tong, and M. Hong, “Dynamically tunable multi-lobe laser generation via multifocal curved beam,” Opt. Express 26 (23), 30944–30951 (2018).
P. Yang, P. Twardowski, G. Y. Duo, J. Fontaine, and S. Lecler, “Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder,” Opt. Express 26 (4), 3723–3731 (2018).
Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27 (2), 1310–1325 (2019).
I. V. Minin and O. V. Minin, “Subwavelength self-bending structured light beams,” in Proc. of the Fourth Russian-Belarusian Workshop “Carbon Nanostructures and their Electromagnetic Properties” (Tomsk, 2019), p. 52–57.
I. V. Minin and O. V. Minin, “Dielectric particle-based strategy to design a new self-bending subwavelength structured light beams,” in Proc. the 14th Intern. Forum on Strategic Technology (IFOST 2019) (TPU Publishing House, Tomsk, 2019), p. 23.
G. Gu, L. Shao, J. Song, J. Qu, K. Zheng, X. Shen, Z. Peng, J. Hu, X. Chen, M. Chen, and Q. Wu, “Photonic hooks from Janus microcylinders,” Opt. Express 27 (26), 37771–37780 (2019).
X. Shen, G. Gu, L. Shao, Z. Peng, J. Hu, S. Bandyopadhyay, Y. Liu, J. Jiang, and M. Chen, “Twin photonic hook generated by twin-ellipse microcylinder,” IEEE Photonics (2020). https://doi.org/10.1109/JPHOT.2020.2966782
X. Ma, Y. Guo, M. Pu, J. J. Jin, P. Gao, X. Li, and X. Luo, “Tunable optical hooks in the visible band based on ultra-thin metalenses,” Ann. Phys. (New York), 1900396 (2019).
A. S. Ang, I. V. Minin, O. V. Minin, S. V. Sukhov, A. Shalin, and A. Karabchevsky, “Low-contrast photonic hook manipulator for cellular differentiation,” Proc. of the 9th Intern. Conf. on Metamaterials, Photonic crystals and Plasmonics, Marseille, France, June,2018. P. 7–8.
X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).
H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Opt. Lett. 41 (7), 1652–1655 (2016).
I. V. Minin, O. V. Minin, V. Pena, and M. Beruete, “Subwavelength, standing-wave optical trap based on photonic jets,” Quantum Electron. 46 (6), 555–557 (2016).
Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10 (6), 5800–5808 (2016).
Yu. E. Geints and A. A. Zemlyanov, “Metalens optical 3D-trapping and manipulating of nanoparticles,” J. Opt. 20, 075102 (2018).
H. S. Patel and S. K. Majumder, “Photonic nanojet: Generation, manipulation and applications,” RRCAT Newslett. 31 (2), 24–33 (2018).
A. A. R. Neves, “Photonic nanojets in optical tweezers,” J. Quant. Spectrosc. Radiat. Transfer 162, 122–132 (2015).
B. Du, J. Xia, J. Wu, J. Zhao, and H. Zhang, “Switchable photonic nanojet by electro-switching nematic liquid crystals,” Nanomaterials 9 (1), 72 (2019).
J. Zhu and L. L. Goddard, “All-dielectric concentration of electromagnetic fields at the nanoscale: The role of photonic nanojets,” Nanoscale Adv. 1 (12), 4615–4643 (2019).
R. Chen, J. Lin, P. Jin, M. Cada, and Y. Ma, “Photonic nanojet beam shaping by illumination polarization engineering,” Opt. Commun., No. 456, 124 593 (2020).
O. V. Minin, I. V. Minin, and N. Kharitoshin, “Microcubes aided photonic jet scalpel tips for potential use in ultraprecise laser surgery,” in Proc.2015Intern. Conf. on Biomedical Engineering and Computational Technologies (SIBIRCON), Novosibirsk, Russia, October 2015. P. 18–21.
Funding
This work was supported in part by the Russian Foundation for Basic Research (project no. 20-57-S52001) (I.V. Minin, O.V. Minin), Competitiveness Enhancement Program of Tomsk Polytechnic University, Tomsk State University Mendeleev Fund Program, and State Contract for the Institute of Atmospheric Optics (Yu.E. Geints, E.K. Panina).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by A. Nikol’skii
Rights and permissions
About this article
Cite this article
Minin, I.V., Minin, O.V., Geints, Y.E. et al. Optical Manipulation of Micro- and Nanoobjects Based on Structured Mesoscale Particles: a Brief Review. Atmos Ocean Opt 33, 464–469 (2020). https://doi.org/10.1134/S1024856020050115
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856020050115