Skip to main content

The Hypothesis of Volcanogenic Soot and the Possibility of Its Observational Confirmation

Abstract

The hypothesis suggested by V.V. Zuev with coauthors in 2014 about the possibility of formation of nanosize black carbon particles in the eruptive column of a volcanic eruption with VEI ≥ 4 is discussed. Probable characteristics of volcanogenic soot particles and their distinction from stratospheric black carbon particles of other origins are analyzed. Suitable instrumental techniques for particle detection are briefly reviewed. Observational facts of possible earlier detection of volcanogenic soot particles are given. The idea of a complex experiment for observational confirmation of the hypothesis is suggested.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    S. Kremser, L. W. Thomason, M. von Hobe, M. Hermann, T. Deshler, C. Timmreck, M. Toohey, A. Stenke, J. P. Schwarz, R. Weigel, S. Fueglistaler, F. J. Prata, J.-P. Vernier, H. Schlager, J. E. Barnes, J.-C. Antuna-Marrero, D. Fairlie, M. Palm, E. Mahieu, J. Notholt, M. Rex, C. Bingen, F. Vanhellemont, A. Bourassa, M. C. John, J. M. C. Plane, D. Klocke, C. A. Carn, L. Clarisse, T. Trickl, R. Neely, A. D. James, L. Rieger, J. C. Wilson, and B. Meland, “Stratospheric aerosol—observations, processes, and impact on climate,” Rev. Geophys. 54, 278–335 (2016).

    ADS  Article  Google Scholar 

  2. 2

    V. V. Zuev, N. E. Zueva, P. K. Kutsenogii, and E. S. Savel’eva, “Volcanogenic nanosized carbon aerosol in the stratosphere,” Chem Sustain. Devel. 22 (1), 81–86 (2014).

    Google Scholar 

  3. 3

    V. V. Zuev, N. E. Zueva, E. S. Savel’eva, A. P. Shelekhov, E. A. Shelekhova, “The role of volcanic heating of the tropical stratosphere in formation of heat centers in the Arctic regions,” Atmos. Ocean. Opt. 27 (3), 262–267 (2014).

    Article  Google Scholar 

  4. 4

    V. V. Zuev, N. E. Zueva, and E. S. Saveljeva, “Temperature and ozone anomalies as indicators of volcanic soot in the stratosphere,” Atmos. Ocean. Opt. 28 (1), 100–106 (2015).

    Article  Google Scholar 

  5. 5

    V. V. Zuev, N. E. Zueva, E. S. Savelieva, and V. V. Gerasimov, “Plinian Eruptions As a Potential Source of Black Carbon in the Stratosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 11208 (2019).

  6. 6

    H. Sigurdsson, B. Houghton, S. R. McNutt, H. Rymer, and J. Stix, The Encyclopedia of Volcanoes (Academic Press, London, 2015).

    Google Scholar 

  7. 7

    V. P. Zuev and V. V. Mikhailov, Soot Manufacturing (Khimiya, Moscow, 1965) [in Russian].

    Google Scholar 

  8. 8

    V. F. Surovikin, ”Modern tendencies of development of methods and technologies of nanodispersed carbon materials obtaining,” Ros. Khim. Zh. 51 (4), 92–97 (2007).

    Google Scholar 

  9. 9

    M. N. Ess and K. Vasilatou, “Characterization of a new MiniCAST with diffusion flame and premixed flame options: Generation of particles with high EC content in the size range 30 nm to 200 nm,” Aerosol Sci. Technol. 53 (1), 29–44 (2019).

    ADS  Article  Google Scholar 

  10. 10

    S. A. Beresnev, M. S. Vasil’eva, V. I. Gryazin, and L. B. Kochneva, “Photophoresis of fractal-like soot aggregates: Microphysical model, comparison with experiment, and possible atmospheric manifestations,” Atmos. Ocean. Opt. 30 (6), 527–532 (2017).

    Article  Google Scholar 

  11. 11

    S. A. Beresnev, V. I. Gryazin, and K. G. Gribanov, “Analysis of wind vertical component characteristics in the stratosphere,” Rus. Meteor. Hydrol. 34 (11), 724–731 (2009).

    Article  Google Scholar 

  12. 12

    V. I. Gryazin and S. A. Beresnev, “Influence of vertical wind on stratospheric aerosol transport,” Meteorol. Atmos. Phys. 110 (3-4), 151–162 (2011).

    ADS  Article  Google Scholar 

  13. 13

    J.-B. Renard, C. Brogniez, G. Berthet, Q. Bourgeois, B. Gaubicher, M. Chartier, J.-Y. Balois, C. Verwaerde, F. Auriol, P. Francois, D. Daugeron, and C. Engrand, “Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid particles and analysis of their spatial variability,” J. Geophys. Res. 113 (D21303) (2008).

  14. 14

    J.-B. Renard, G. Berthet, V. Salazar, V. Catoire, M. Tagger, B. Gaubicher, and C. Robert, “In situ detection of aerosol layers in the middle stratosphere,” Geophys. Rev. Lett. 37 (2010). https://doi.org/10.1029/2010GL044307

  15. 15

    J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jegou, T. Tonnelier, M. Jeannot, B. Coute, R. Akik, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, P. Zieger, M. Salter, T. Roberts, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Decamps, M. Piringer, J. Surcin, and D. Daugeron, “LOAC: A small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles—Part 1: Principle of measurements and instrument evaluation,” Atmos. Meas. Tech. 9, 1721–1742 (2016).

    Article  Google Scholar 

  16. 16

    J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jegou, T. Tonnelier, M. Jeannot, B. Coute, R. Akik, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, P. Zieger, M. Salter, T. Roberts, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Decamps, M. Piringer, J. Surcin, and D. Daugeron, “LOAC: A small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles—Part 2: First Results from balloon and unmanned aerial vehicle flights,” Atmos. Meas. Tech. 9, 3673–3686 (2016).

    Article  Google Scholar 

  17. 17

    J.-B. Renard, G. Berthet, A.-C. Levasseur-Regourd, S. Beresnev, A. Miffre, P. Rairoux, D. Vignelles, and F. Jegon, “The complex origin and spatial distribution of non-pure sulfate particles (NSPs) in the stratosphere,” Atmos. Chem. Phys. Discuss. (2019). .https://doi.org/10.5194/acp-2019-904

  18. 18

    R. F. Pusechel, D. F. Blake, K. G. Snetsinger, A. D. A. Hansen, S. Verma, and K. Kato, “Black carbon (soot) aerosol in the lower stratosphere and upper troposphere,” Geophys. Rev. Lett. 19 (16), 1659–1662 (1992).

    ADS  Article  Google Scholar 

  19. 19

    P. J. Sheridan, C. A. Brock, and J. C. Wilson, “Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes,” Geophys. Rev. Lett. 21 (23), 2587–2590 (1994).

    ADS  Article  Google Scholar 

  20. 20

    M. Ebert, R. Weigel, K. Kandler, G. Gunther, S. Molleker, J.-U. Grooß, B. Vogel, S. Weinbruch, and S. Borrmann, “Chemical analysis of refractory stratospheric aerosol particles collected within the Arctic vortex and inside polar stratospheric clouds,” Atmos. Chem. Phys. 16, 8405–8421 (2016).

    ADS  Article  Google Scholar 

  21. 21

    D. M. Murphy, K. D. Froyd, J. P. Schwarz, and J. C. Wilson, “Observations of the chemical composition of stratospheric aerosol particles,” Q. J. R. Meteorol. Soc 140, 1269–1278 (2014).

    ADS  Article  Google Scholar 

  22. 22

    R. Bahreini, J. L. Jimenez, J. Wang, R. C. Flagan, J. H. Seinfeld, J. T. Jayne, and D. R. Worsnop, “Aircraft-based aerosol size and composition measurements during ACE-Asia using an aerodyne aerosol mass spectrometer,” J. Geophys. Res. 108 (D23), 8635 (2003).

    Article  Google Scholar 

  23. 23

    R. S. Gao, J. P. Schwarz, K. K. Kelly, D. W. Fahey, L. A. Watts, T. L. Thompson, J. R. Spackman, J. G. Slowik, E. S. Cross, J.-H. Han, P. Davidovits, T. B. Onasch, and D. R. Worsnop, “A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer,” Aerosol Sci. Technol. 41, 125–135 (2007).

    ADS  Article  Google Scholar 

  24. 24

    D. Baumgardner, G. Kok, and G. Raga, “Warming of the Arctic lower stratosphere by light absorbing particles,” Geophys. Rev. Lett. 31, L06117 (2004).

  25. 25

    R. R. Draxler and G. D. Hess, “An overview of the HYSP-LIT_4 modelling system for trajectories, dispersion and deposition,” Australian Meteor. Mag. 47 (4), 295–308 (1998).

    Google Scholar 

  26. 26

    N. Begue, D. Vignelles, G. Berthet, T. Portafaix, G. Payen, F. Jegou, H. Bencherif, J. Jumelet, J.-P. Vernier, T. Lurton, J.-B. Renard, L. Clarisse, V. Duverger, F. Posny, J.-M. Metzger, and S. Godin-Beekmann, “Long-range transport of stratospheric aerosols in the Southern hemisphere following the 2015 Calbuco eruption,” Atmos. Chem. Phys. 17, 15019–15036 (2017).

    ADS  Article  Google Scholar 

  27. 27

    F. Jegou, G. Berthet, C. Brogniez, J.-B. Renard, P. Francois, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron, “Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer,” Atmos. Chem. Phys. 13, 6533–6552 (2013).

    ADS  Article  Google Scholar 

  28. 28

    R. L. Chuan and D. C. Woods, “The appearance of carbon aerosol particles in the lower stratosphere,” Geophys. Rev. Lett. 11 (5), 553–556 (1984).

    ADS  Article  Google Scholar 

  29. 29

    J. D. Scott and D. M. Chittenden, “Chemical composition of particles of d < 0.20 μm in the lower stratospheric aerosol, spring 1993,” J. Arkansas Acad. Sci. 56 (1) (2002).

  30. 30

    K. Schutze, J. C. Wilson, S. Weinbruch, N. Benker, M. Ebert, G. Gunther, R. Weigel, and S. Borrmann, “Sub-micrometer refractory carbonaceous particles in the polar stratosphere,” Atmos. Chem. Phys. 17, 12475–12493 (2017).

    ADS  Article  Google Scholar 

  31. 31

    A. W. Strawa, K. Drdla, G. V. Ferry, S. Verma, R. F. Pueschel, M. Yasuda, R. J. Salawitch, R. S. Gao, S. D. Howard, P. T. Bui, M. Loewenstein, J. W. Elkins, K. K. Perkins, and R. Cohen, “Carbonaceous aerosol (soot) measured in the lower stratosphere during POLA-RIS and its role in stratospheric photochemistry,” J. Geophys. Res. 104 (D21), 26,753 (1999).

    ADS  Article  Google Scholar 

  32. 32

    D. F. Blake and K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere,” J. Geophys. Res. 100 (D4), 7195–7202 (1995).

    ADS  Article  Google Scholar 

  33. 33

    R. F. Pueschel, K. A. Boering, S. Verma, S. D. Howard, G. V. Ferry, J. Goodman, D. A. Allen, and P. Hamill, “Soot aerosol in the lower stratosphere: Pole-to-pole variability and contributions by aircraft,” J. Geophys. Res. 102 (D11), 13,113 (1997).

    ADS  Article  Google Scholar 

  34. 34

    A. Petzold, A. Dopelheuer, C. A. Brock, and F. Schroeder, “In situ observations and model calculations of black carbon emission by aircraft at cruise altitude,” J. Geophys. Res. 104 (D18), 22,171 (1999).

    ADS  Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Higher Education and Science of the Russian Federation within the State Assignment for the Institute of Natural Sciences and Mathematics of the Ural Federal University (theme FEUZ-2020-0057) and by the Government of the Russian Federation (decree no. 211, agreement no. 02.A03.21.0006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. A. Beresnev or M. S. Vasiljeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beresnev, S.A., Vasiljeva, M.S. The Hypothesis of Volcanogenic Soot and the Possibility of Its Observational Confirmation. Atmos Ocean Opt 33, 531–538 (2020). https://doi.org/10.1134/S102485602005005X

Download citation

Keywords:

  • stratosphere
  • black carbon
  • Plinian eruption
  • volcanogenic soot