E. M. Ellis, Ph.D. Thesis (Imperial College of Science, Technology and Medicine, University of London, 1999).
F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, Cambridge, 1999).
Book
Google Scholar
http://www.ctio.noao.edu/~atokovin/tutorial/. Cited December 22, 2019.
R. Cousty, T. Antonini, M. Aubry, H. Krol, and A. Moreau, “Monomorph deformable mirrors: From ground-based facilities to space telescopes,” Proc. SPIE—Int. Soc. Opt. Eng. 10562, 1056231–9 (2016).
S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” Proc. SPIE—Int. Soc. Opt. Eng. 10564, 1056414 (2017).
D. Alaluf, R. Bastaits, K. Wang, M. Horodinca, G. Martic, B. Mokrani, and A. Preumont, “Unimorph mirror for adaptive optics in space telescopes,” Appl. Opt. 57 (14), 3629–3638 (2018).
ADS
Article
Google Scholar
S. M. Jones, S. Olivier, D. Chen, S. Joeres, S. Sadda, R. J. Zawadzki, J. S. Werner, and D. T. Miller, “Adaptive optics ophthalmologic systems using dual deformable mirrors,” Proc. SPIE—Int. Soc. Opt. Eng. 6467, 6470H-1–14 (2007).
C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE—Int. Soc. Opt. Eng. 6930, 69300Y-1–12 (2008).
S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power CW-solid state laser,” Proc. SPIE—Int. Soc. Opt. Eng. 8253, 825309-1–12 (2012).
A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. V. Samarkin, “Adaptive correction of a high-power titanium-sapphire laser radiation,” J. Appl. Spectrosc. 72 (5), 744–750 (2005).
ADS
Article
Google Scholar
E. A. Kopylov and V. P. Lukin, “Static characteristics of the DM2-100-31 bimorph mirror and a possibility of its application in the adaptive optical system of Big Solar Vacuum Telescope,” Opt. Atmos. Okeana 23 (12), 1111–1113 (2010).
Google Scholar
J. Ma, Y. Liu, Y. Hu, C. Xu, B. Li, and J. Chu, “Low-cost unimorph deformable mirror with high actuator count for astronomical adaptive optics,” Opt. Eng. 52 (1), 016602 (2013).
ADS
Article
Google Scholar
P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: Environmental testing,” Opt. Express 24 (2), 1528–1542 (2016).
ADS
Article
Google Scholar
D. Alaluf, Ph.D. Thesis (Universite Libre de Bruxelles, Active Structures Laboratory, 2016).
A. S. Sobolev, T. Yu. Cherezova, and A. V. Kudryashov, “Analytical and numerical models of a bimorph mirror,” Atmos. Ocean. Opt. 18 (3), 254–258 (2005).
Google Scholar
Y. Ning, W. Jiang, N. Ling, and C. Rao, “Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors,” Opt. Express 15 (19), 12030–12038 (2007).
ADS
Article
Google Scholar
S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49 (31), G37–G46 (2010).
Article
Google Scholar
V. Piefort, Ph.D. Thesis (Universite Libre de Bruxelles, 2001).
www.academia.edu/16970000/MESH_QUALITY_ AND_ADVENCED_TOPICS_ANSYS_WORKBENCH_16.0. Cited December, 22, 2019.
A. Kudryashov and V. Shmalhauzen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35 (11), 3064–3073 (1996).
ADS
Article
Google Scholar
V. G. Nikiforov, Multilayer Piezoelectric Actuators. Theory and Practice (Elpa) [in Russian].
Piezoelectric Ceramics: Principles and Applications (APC International, 2011), 2nd. ed.
V. V. Kharitonov, Thermophysics of Laser Mirrors (MIFI, Moscow, 1993) [in Russian].
Google Scholar
I. A. Ivan, M. Rakotondrabe, J. Agnus, R. Bourquin, N. Chaillet, P. Lutz, J. C. Poncot, R. Duffait, and D. Bauer, “Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials for composite bimorph actuators,” Rev. Adv. Mater. Sci., No. 24, 1–9 (2010).