Skip to main content

Numerical Simulations of a Monomorph Deformable Mirror in ANSYS Software


Based on the numerical simulations in ANSYS software the design of a monomorph (unimorph) deformable mirror has been developed. The control electrodes pattern, which allows reproducing aberrations up to 5th order (the first 21 Zernike modes) on the light aperture with high fidelity, was chosen. All important characteristics of the monomorph mirror were simulated: electrode-influence functions, errors in the reproduction of given aberrations, gravitational sag of the mirror, mirror surface deformations due to ambient temperature changes, thermal deformations and thermal field due to the incident laser beam, and natural frequencies of the mirror. The results prove a high efficiency of this mirror as an element of adaptive optics systems.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. E. M. Ellis, Ph.D. Thesis (Imperial College of Science, Technology and Medicine, University of London, 1999).

  2. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  3. Cited December 22, 2019.

  4. R. Cousty, T. Antonini, M. Aubry, H. Krol, and A. Moreau, “Monomorph deformable mirrors: From ground-based facilities to space telescopes,” Proc. SPIE—Int. Soc. Opt. Eng. 10562, 1056231–9 (2016).

  5. S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” Proc. SPIE—Int. Soc. Opt. Eng. 10564, 1056414 (2017).

  6. D. Alaluf, R. Bastaits, K. Wang, M. Horodinca, G. Martic, B. Mokrani, and A. Preumont, “Unimorph mirror for adaptive optics in space telescopes,” Appl. Opt. 57 (14), 3629–3638 (2018).

    ADS  Article  Google Scholar 

  7. S. M. Jones, S. Olivier, D. Chen, S. Joeres, S. Sadda, R. J. Zawadzki, J. S. Werner, and D. T. Miller, “Adaptive optics ophthalmologic systems using dual deformable mirrors,” Proc. SPIE—Int. Soc. Opt. Eng. 6467, 6470H-1–14 (2007).

  8. C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE—Int. Soc. Opt. Eng. 6930, 69300Y-1–12 (2008).

  9. S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power CW-solid state laser,” Proc. SPIE—Int. Soc. Opt. Eng. 8253, 825309-1–12 (2012).

  10. A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. V. Samarkin, “Adaptive correction of a high-power titanium-sapphire laser radiation,” J. Appl. Spectrosc. 72 (5), 744–750 (2005).

    ADS  Article  Google Scholar 

  11. E. A. Kopylov and V. P. Lukin, “Static characteristics of the DM2-100-31 bimorph mirror and a possibility of its application in the adaptive optical system of Big Solar Vacuum Telescope,” Opt. Atmos. Okeana 23 (12), 1111–1113 (2010).

    Google Scholar 

  12. J. Ma, Y. Liu, Y. Hu, C. Xu, B. Li, and J. Chu, “Low-cost unimorph deformable mirror with high actuator count for astronomical adaptive optics,” Opt. Eng. 52 (1), 016602 (2013).

    ADS  Article  Google Scholar 

  13. P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: Environmental testing,” Opt. Express 24 (2), 1528–1542 (2016).

    ADS  Article  Google Scholar 

  14. D. Alaluf, Ph.D. Thesis (Universite Libre de Bruxelles, Active Structures Laboratory, 2016).

  15. A. S. Sobolev, T. Yu. Cherezova, and A. V. Kudryashov, “Analytical and numerical models of a bimorph mirror,” Atmos. Ocean. Opt. 18 (3), 254–258 (2005).

    Google Scholar 

  16. Y. Ning, W. Jiang, N. Ling, and C. Rao, “Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors,” Opt. Express 15 (19), 12030–12038 (2007).

    ADS  Article  Google Scholar 

  17. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49 (31), G37–G46 (2010).

    Article  Google Scholar 

  18. V. Piefort, Ph.D. Thesis (Universite Libre de Bruxelles, 2001).

  19. AND_ADVENCED_TOPICS_ANSYS_WORKBENCH_16.0. Cited December, 22, 2019.

  20. A. Kudryashov and V. Shmalhauzen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35 (11), 3064–3073 (1996).

    ADS  Article  Google Scholar 

  21. V. G. Nikiforov, Multilayer Piezoelectric Actuators. Theory and Practice (Elpa) [in Russian].

  22. Piezoelectric Ceramics: Principles and Applications (APC International, 2011), 2nd. ed.

  23. V. V. Kharitonov, Thermophysics of Laser Mirrors (MIFI, Moscow, 1993) [in Russian].

    Google Scholar 

  24. I. A. Ivan, M. Rakotondrabe, J. Agnus, R. Bourquin, N. Chaillet, P. Lutz, J. C. Poncot, R. Duffait, and D. Bauer, “Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials for composite bimorph actuators,” Rev. Adv. Mater. Sci., No. 24, 1–9 (2010).

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to D. A. Yagnyatinskiy or V. N. Fedoseyev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yagnyatinskiy, D.A., Fedoseyev, V.N. Numerical Simulations of a Monomorph Deformable Mirror in ANSYS Software. Atmos Ocean Opt 33, 372–378 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • monomorph deformable mirror
  • numerical simulations
  • ANSYS software
  • aberrations
  • influence functions
  • thermal deformations
  • natural frequencies