Skip to main content

Estimation of the Effect of Spectroscopic Information Accuracy on the Lidar Measurements of Methane with the Use of Expert Line Lists

Abstract

The transmission spectra and methane absorption coefficients are compared for different widths of the instrument function of the spectral distribution of laser power using different sources of spectroscopic information. An expert list of methane lines is compiled.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, A. P. Makeev, O. A. Romanovskii, and O. V. Kharchenko, “Lidar complex for measurement of vertical ozone distribution in the upper troposphere-stratosphere,” Atmos. Ocean. Opt. 31 (6), 702–708 (2018).

    Article  Google Scholar 

  2. 2

    I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, AuweraJ. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITR-AN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    ADS  Article  Google Scholar 

  3. 3

    N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, Auwera J. Vander, B. A. Voronin, and A. Makie, “The 2015 Edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–72 (2016).

    ADS  Article  Google Scholar 

  4. 4

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  5. 5

    L. Lodi and J. Tennyson, “Line lists for H218O and H217O based on empirical line positions and ab initio intensities,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 850–858 (2012).

    ADS  Article  Google Scholar 

  6. 6

    S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J.‑P. Champion, M. Loete, A. Nikitin, and M. Quack, “Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm–1,” Chem. Phys. 356, 131–146 (2009).

    Article  Google Scholar 

  7. 7

    M. Rey, A. V. Nikitin, and V. G. Tyuterev, “Predictions for methane spectra from potential energy and dipole moment surfaces: Isotopic shifts and comparative study of 13CH4 and 12CH4,” J. Mol. Spectrosc. 291, 85–97 (2013).

    ADS  Article  Google Scholar 

  8. 8

    V. Tyuterev, S. Tashkun, M. Rey, R. Kochanov, A. Nikitin, and T. Delahaye, “Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations,” J. Phys. Chem. A 117 (50), 13779–13805 (2013).

    Article  Google Scholar 

  9. 9

    R. Mezheris, Remote Laser Sounding (Mir, Moscow, 1987) [in Russian].

  10. 10

    T. Furtenbacher and A. G. Császár, “MARVEL: Measured Active Rotational-Vibrational Energy Levels. II. Algorithmic improvements,” J. Quant. Spectrosc. Radiat. Transfer 113, 929–935 (2012).

    ADS  Article  Google Scholar 

  11. 11

    M. Rey, A. Nikitin, Yu. Babikov, and V. Tyuterev, “TheoReTS—an information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces,” J. Mol. Spectrosc. 327, 138–158 (2016).

    ADS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Education of the Russian Federation (agreement No. 05.616.21.0118, unique project identifier RFMEFI61619X0118).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Vasilenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasilenko, I.A., Sadovnikov, S.A. & Romanovskii, O.A. Estimation of the Effect of Spectroscopic Information Accuracy on the Lidar Measurements of Methane with the Use of Expert Line Lists. Atmos Ocean Opt 33, 415–418 (2020). https://doi.org/10.1134/S1024856020040181

Download citation

Keywords:

  • methane
  • differential absorption method
  • expert line lists