Skip to main content

Characteristics of Cumulonimbus with Waterspout over Ladoga Lake from Remote Measurements

Abstract

Characteristics of a thunderstorm cloud, from which a waterspout over Ladoga Lake appeared are studied with the use of the measurements from C-band Doppler Meteorological Radar (DMRL-C), a lightning detection system, and a high-altitude atmospheric radiosonde. Analysis of the indices of convective instability showed small to moderate probability of the development of intense convective processes. We applied algorithms for hydrometeor classification and updraft determination from DMRL-C measurements of polarization characteristics for the first time. These algorithms revealed the occurrence of large ice particles in the cloud at the beginning of thunderstorm activity and recorded an extended updraft associated with the waterspout. Analysis of dependences between the lightning frequency and different radar characteristics showed that the correlation is the strongest with a number of large ice particles characterized by the volume of supercooled (above 0°C isotherm) part of the cloud with reflectivity larger than 50 dBZ.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    A. I. Bedritskii, Russian Hydrometeorological Dictionary (Letnii sad, St. Petersburg, 2009) [in Russian].

  2. 2

    H. S. Park, A. V. Ryzhkov, D. S. Zrnic, and K.-E. Kim, “The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS,” Weather Forecast 24, 730–748 (2009).

    ADS  Article  Google Scholar 

  3. 3

    B. Dolan and S. A. Rutledge, “A theory-based hydrometeor identification algorithm for X-band polarimetric radars,” J. Atmos. Ocean. Technol. 26, 2071–2088 (2009).

    ADS  Article  Google Scholar 

  4. 4

    B. Dolan, S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, “A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset,” J. Appl. Meteorol. Climatol 52, 2162–2186 (2013).

    ADS  Article  Google Scholar 

  5. 5

    A. V. Ryzhkov and D. S. Zrnic, Radar Polarimetry for Weather Observations (Switzerland, Springer, 2019).

    Book  Google Scholar 

  6. 6

    T. J. Carlin, J. Gao, J. C. Snyder, and A. V. Ryzhkov, “Assimilation of ZDR Columns for Improving the spinup and forecast of convective storms in storm-scale models: Proof-of-concept experiments,” Mon. Weather. Rev. 145, 5033–5057 (2017).

    ADS  Article  Google Scholar 

  7. 7

    A. A. Sin’kevich and Yu. A. Dovgalyuk, “Corona discharge in clouds,” Radiophys. Qunatum Electron. 56 (11-12), 818–828 (2014).

    ADS  Article  Google Scholar 

  8. 8

    V. B. Popov, A. A. Sin’kevich, Dzh. Yang, Yu. P. Mikhailovskii, M. L. Toropova, Yu. A. Dovgalyuk, N. E. Veremei, and D. S. Starykh, “Characteristics and structure of cumulonimbus clouds in a water spout in the North-Western Region of Russia,” Rus. Meteorol. Hydrol. (in print).

  9. 9

    D. M. Lal and S. D. Pawar, “Relationship between rainfall and lightning over Central Indian Region in monsoon and premonsoon seasons,” Atmos. Res. 92, 402-410 (2009).

    Article  Google Scholar 

  10. 10

    A. Karagiannidis, K. Lagouvardos, S. Lykoudis, V. Kotroni, T. Giannaros, and H.-D. Betz, “Modeling lightning density using cloud top parameters,” Atm-os. Res. 222, 163–171 (2019).

    Article  Google Scholar 

  11. 11

    A. T. Pessi and S. Businger, “Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean,” J. Appl. Meteorol. Climatol. 48 (4), 833–848 (2009).

    ADS  Article  Google Scholar 

  12. 12

    V. N. Stasenko, Radar Study of Multicell Convection (Thunderstorm) Clouds (Gidrometeoizdat, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  13. 13

    V. D. Stepanenko, Radar Positioning in Meteorology (Radio Meteorology) (Gidrometeoizdat, Leningrad, 1973) [in Russian].

  14. 14

    Yu. P. Mikhailovskii, A. A. Sin’kevich, S. D. Pavar, V. Gopalakrishnan, Yu. A. Dovgalyuk, N. E. Veremei, E. V. Bogdanov, A. B. Kurov, A. Kh. Adzhiev, A. M. Malkarova, and A. M. Abshaev, “Investigations of the development of thunderstorm with hail. Part 2. Analysis of methods for the forecast and diagnosis of the electrical properties of clouds,” Rus. Meteorol. Hydrol. 42 (6), 377–387 (2017).

    Article  Google Scholar 

  15. 15

    E. Wanke, R. Andersen, and T. Volgnandt, http://en. blitzortung.org/Compendium/Documentations/Documentation_2014-05-11_Red_PCB_10.4_PCB_12.3_ PCB_13.1_PCB_14.1.pdf. Cited January 13, 2020.

  16. 16

    R. W. Armstrong and J. G. Glenn, “Electrical role for severe storm tornadogenesis (and modification),” J. Climatol. Weather Forecast 3 (3), 1–8 (2015).

    Google Scholar 

  17. 17

    M. S. Stough, L. D. Carey, and C. J. Schultz, “Total lightning as an indicator of mesocyclone behavior,” in Proc. of the XV Int. Conf. Atmos. Electr. Norman, Oklahoma, June, 15–20,2014. P. 1–15.

  18. 18

    A. A. Sin’kevich, Yu. P. Mikhailovskii, Yu. A. Dovgalyuk, N. E. Veremei, E. V. Bogdanov, A. H. Adzhiev, A. M. Malkarova, and A. M. Abshaev, “Investigations of the development of thunderstorm with hail. Part 1. Cloud development and formation of electric discharges,” Rus. Meteorol. Hydrol. 41 (9), 610–619 (2016).

    Article  Google Scholar 

  19. 19

    A. A. Sin’kevich, Yu. P. Mihajlovskii, S. Yu. Matrosov, V. B. Popov, V. S. Snegurov, A. V. Snegurov, Yu. A. Dovgalyuk, and N. E. Veremei, “Relationships between the structure of convective clouds and lightning frequency derived from radiophysical measurements,” Rus. Meteorol. Hydrol. 44 (6), 394–403 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S. Egorchenko, who took a photo of waterspout, provided access to it, and permitted us to use it in our study (https://vk.com/sergey_eg?w=wall1471346_ 2750%2Fall).

Funding

This work was supported by the Russian Foundation for Basic Research (under grants no. 17-05-00965_a and BRIKS_t no. 18-55-80 020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Sin’kevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sin’kevich, A.A., Popov, V.B., Mikhailovskii, Y.P. et al. Characteristics of Cumulonimbus with Waterspout over Ladoga Lake from Remote Measurements. Atmos Ocean Opt 33, 387–392 (2020). https://doi.org/10.1134/S1024856020040156

Download citation

Keywords:

  • waterspout
  • polarimetric radar
  • hydrometeor classification algorithm
  • updrafts
  • instability indices
  • lightning frequency