Skip to main content

Liquid-Nitrogen-Cooled Optical Cell for the Study of Absorption Spectra in a Fourier Spectrometer


A low-temperature 17.5-cm long vacuum cell with removable quartz, ZnSe, and KBr windows has been designed for working with the high-resolution Bruker IFS 125M FT-IR spectrometer. The cell provides a threshold absorption sensitivity of about 10−6 cm−1. The cell makes it possible to record the absorption spectra of gases in the region 1000–20 000 cm−1 in the temperature range from 108 to 298 K with an error of ±0.1 K. The 12CH4 absorption spectra were recorded in the range from 9000 to 9200 cm−1 at a pressure of 300 mbar and a temperature of 298 and 108 K with a spectral resolution of 0.03 cm−1. The empirical values of the energy levels of lower states were calculated from the ratios of line intensities measured at different temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    E. Sepulveda, M. Schneider, and F. Hase, “Long-term validation of tropospheric column-averaged CH4 mole fractions obtained by mid-infrared ground-based FTIR spectrometry,” Atmos. Meas. Tech. 5, 1425–1441 (2012).

    Article  Google Scholar 

  2. 2

    P. J. Crutzen, Geophysiology of Amazonia: Vegetation and Climate Interactions (Wiley, New York, 1987).

    Google Scholar 

  3. 3

    R. M. Goody and Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford University Press, New York, 1995).

    Google Scholar 

  4. 4

    R. Goody, “Atmospheres of major planets,” J. Atmos. Sci. 26, 997–1001 (1969).

    ADS  Article  Google Scholar 

  5. 5

    M. Combes, C. D. Bergh, J. Lecacheus, and J. P. Maillard, “Identification of 13CH4 in atmosphere of Saturn,” Astron. Astrophys. 40, 81–84 (1975).

    ADS  Google Scholar 

  6. 6

    G. Widemann, G. L. Bjoraker, and D. E. Jennings, “Detection of 13CH4 in Jupiter atmosphere,” Astrophys. J. 383, 29–32 (1991).

    ADS  Article  Google Scholar 

  7. 7

    T. Encrenaz, “Remote sensing analysis of solar-system objects,” Phys. Scr. 130, 014037 (2008).

    Article  Google Scholar 

  8. 8

    K. Sung, A. W. Mantz, and M. A. H. Smith, “Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for 13CH4 at 7 µm,” J. Mol. Spectrosc. 262, 122–134 (2010).

    ADS  Article  Google Scholar 

  9. 9

    A. W. Mantz, K. Sung, and L. R. Brown, “A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR,” J. Mol. Spectrosc. 304, 12–24 (2014).

    ADS  Article  Google Scholar 

  10. 10

    D. E. Jennings and J. J. Hillman, “Shock isolator for diode-laser operations on a closed-cycle refrigerator,” Rev. Sci. Instrum. 48, 1568–1569 (1977).

    ADS  Article  Google Scholar 

  11. 11

    A. W. Mantz, V. Devi Malathy, D. C. Benner, M. A. H. Smith, A. Predoi-Cross, and M. Dulick, “A multispectrum analysis of widths and shifts in the 2010–2260 cm–1 region of 12C16O broadened by helium at temperatures between 80–297 K,” J. Mol. Struct. 742, 99–110 (2005).

    ADS  Article  Google Scholar 

  12. 12

    S. Kassi, B. Gao, D. Romanini, and A. Campargue, “The near infrared (1.30–1.70 mm) absorption spectrum of methane down to 77 K,” Phys. Chem. Chem. Phys. 10, 4410 (2008).

    Article  Google Scholar 

  13. 13

    A. Campargue, Le. Wang, S. Kassi, M. Masat, and O. Votava, “Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The icosad region (1.49–1.30 µm),” J. Quant. Spectrosc. Radiat. Transfer 111, 1141 (2010).

    ADS  Article  Google Scholar 

  14. 14

    V. I. Serdyukov, L. N. Sinitsa, A. A. Lugovskoi, and N. M. Emel’yanov, “Low-temperature cell for studying absorption spectra of greenhouse gases,” Atmos. Ocean. Opt. 32, N 2. P. 220–226 (2019).

    Article  Google Scholar 

  15. 15

    J. S. Margolis and K. Fox, “Infrared absorption spectrum of CH4 at 9050 cm–1,” J. Chem. Phys. 49, 2451 (1968).

    ADS  Article  Google Scholar 

  16. 16

    J. P. Maillard, M. Combes, Th. Encrenaz, and J. Lecacheux, “New infrared spectra of the Jovian planets from 12000 to 4000 cm by Fourier transform spectroscopy,” Astrophys. J. 25, 219–232 (1973).

    ADS  Google Scholar 

  17. 17

    L.N. Sinitsa, Doctoral Dissertation in Mathematical Physics (Institute of Atmospheric Optics SB RAS, Tomsk, 1988).

  18. 18

    T. V. Kruglova and A. P. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111, 353–356 (2011).

    ADS  Article  Google Scholar 

  19. 19

    M. Hippler and M. Quack, “High-resolution Fourier transform infrared and CW-diode laser cavity ring down spectroscopy of the ν2 + 2ν3 band of methane near 7510 cm–1 in slit jet expansions and at room temperature,” J. Chem. Phys. 116, 6045–6055 (2002).

    ADS  Article  Google Scholar 

  20. 20

    A. V. Nikitin, A. E. Protasevich, M. Rey, V. I. Serdyukov, L. N. Sinitsa, A. Lugovskoy, and Vl. G. Tyuterev, “Improved line list of 12CH4 in the 8850–9180 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 232, 106 646 (2019).

    Article  Google Scholar 

Download references


The work was supported by the Russian Science Foundation (grant no. 17–17–01170).

Author information



Corresponding authors

Correspondence to L. N. Sinitsa, A. A. Lugovskoi or N. M. Emel’yanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, V.I., Sinitsa, L.N., Lugovskoi, A.A. et al. Liquid-Nitrogen-Cooled Optical Cell for the Study of Absorption Spectra in a Fourier Spectrometer. Atmos Ocean Opt 33, 393–399 (2020).

Download citation


  • Fourier spectroscopy
  • absorption spectrum
  • methane