Skip to main content

Aerosol Layers in the Troposphere: Peculiarities of Variations in Aerosol Parameters at a Change in the Advection Direction

Abstract

Aerosol layers with different scattering and absorption properties are studied on the basis of the data of multifrequency sounding. The effect of air advection on the aerosol optical and microphysical parameters in the lower and middle troposphere is analyzed. It is revealed that the low values of the extinction and backscattering coefficients, as well as the imaginary part of the refractive index and mean geometric radius of fine particles are observed at the north transfer direction, and the high values of these parameters are at the south direction. On the contrary, the lidar ratio and the contribution of fine fraction into the total concentration of particles decrease when the direction has been changed from north to south.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Aerosol and Climate, Ed. by K.Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  2. 2

    B. D. Belan, “Dynamics of the atmospheric mixing layer as it follows from data on aerosol,” Atmos. Ocean. Opt. 7 (8), 558–562 (1994).

    Google Scholar 

  3. 3

    R. R. Draxler and G. D. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY. http://ready. arl.noaa.gov/HYSPLIT.php.

  4. 4

    B. D. Belan, V. E. Zuev, and M. V. Panchenko, “Main results of airborne sounding of aerosol conducted at the Institute of Atmospheric Optics from 1981 till 1991,” Atmos. Ocean. Opt. 8 (1-2), 131–156 (1995).

    Google Scholar 

  5. 5

    M. V. Panchenko, S. A. Terpugova, A. G. Tumakov, B. D. Belan, and T. M. Rasskazchikova, “Some aspects of a technique for airborne nephelometric studies of the tropospheric aerosol on a regional scale,” Atmos. Ocean. Opt. 7 (8), 546–551 (1994).

    Google Scholar 

  6. 6

    M. Yu. Arshinov, B. D. Belan, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Organization of monitoring of the greenhouse gases and of the components oxidizing the atmosphere over Siberia and some results obtained. II. Aerosol composition,” Atmos. Ocean. Opt. 19 (12), 954–959 (2006).

    Google Scholar 

  7. 7

    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, D. K. Davidov, E. V. Zhidovkin, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofanov, V. S. Shamanaev, and V. P. Shmargunov, “Optic-E An-30 aircraft laboratory: 20 years of environmental research,” J. Atmos. Ocean. Technol. 29 (11), 64–75 (2012).

    ADS  Google Scholar 

  8. 8

    M. Yu. Arshinov, B. D. Belan, S. B. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, S. B. Malyshkin, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 2. Vertical distribution,” Opt. Atmos. Okeana 30 (9), 733–739 (2017.).

  9. 9

    M. V. Panchenko and S. A. Terpugova, “Annual behavior of the content of submicron aerosol in the troposphere over West Siberia,” Atmos. Ocean. Opt. 7 (8), 552–557 (1994).

    Google Scholar 

  10. 10

    M. V. Panchenko, S. A. Terpugova, and V. V. Pol’kin, “Empirical model of the aerosol optical properties in the troposphere over West Siberia,” Atmos. Ocean. Opt. 11 (6), 532–539 (1998).

    Google Scholar 

  11. 11

    M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of optical characteristics of the tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  12. 12

    M. V. Panchenko and T. B. Zhuravleva, “Vertical profiles of optical and microphysical characteristics of tropospheric aerosol from aircraft measurements,” in Light Scattering Review, Ed. by A. Kokhanovsky (Springer, 2015), p. 199–234.

    Google Scholar 

  13. 13

    M. V. Panchenko, S. A. Terpugova, V. V. Pol’kin, V. S. Kozlov, and D. G. Chernov, “Modeling of aerosol radiation-relevant parameters in the troposphere of Siberia on basis of empirical data,” Atmosphere 9 (11), 414–430 (2018).

    ADS  Google Scholar 

  14. 14

    D. M. Winker, M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

    ADS  Google Scholar 

  15. 15

    A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, Ch. H. Trepte, R. A. Ferrare, K.-P. Lee, Ch. A. Hostetler, Ch. Kittaka, R. R. Rogers, R. E. Kuehn, and Zh. Lie, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol. 26 (10), 1994–2014 (2009).

    ADS  Google Scholar 

  16. 16

    J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European aerosol research lidar network,” in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (L’Ecole Polytechnique, 2000), p. 155–158.

  17. 17

    T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.‑C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106 (D16), 18 345–18 359 (2001).

    ADS  Google Scholar 

  18. 18

    A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LiNet—lidar network for monitoring aerosol and ozone in CIS Regions,” Rev. Revised Papers Presented at the 23d ILRC, Ed. by C. Nagasava and N. Sugimoto (Nara, Japan, 2006), p. 671–672.

  19. 19

    G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: Towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014). https://doi.org/10.5194/amt-7-2389-2014

    Article  Google Scholar 

  20. 20

    G. D’Amico, A. Amodeo, H. Baars, I. Binietoglou, V. Freudenthaler, I. Mattis, U. Wandinger, and G. Pappalardo, “EARLINET single calculus chain—overview on methodology and strategy,” Atmos. Meas. Tech. 8, 4507–4520 (2015).

    Google Scholar 

  21. 21

    F. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc, New York, 1983).

    Google Scholar 

  22. 22

    D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory,” Appl. Opt. 38, 2346–2357 (1999).

    ADS  Google Scholar 

  23. 23

    C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution,” Appl. Opt. 40, 1329–1342 (2001).

    ADS  Google Scholar 

  24. 24

    C. Böckmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22 (2005).

  25. 25

    I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. M. Whiteman, “Inversion of multiwavelength raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).

    ADS  Google Scholar 

  26. 26

    I. Veselovskii, A. Kolgotin, D. Müller, and D. M. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).

    ADS  Google Scholar 

  27. 27

    I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. M. Whiteman, M. Mishchenko, and D. Tanre, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res. 115, D21203 (2010).

    ADS  Google Scholar 

  28. 28

    D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52 (14), 3178–3202 (2013).

    ADS  Google Scholar 

  29. 29

    E. Chemyakin, D. Müller, Sh. Burton, A. Kolgotin, Ch. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53 (31), 7252–7266 (2014).

    ADS  Google Scholar 

  30. 30

    A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, Part 1: Theory,” Appl. Opt. 55 (34), 9839–9849 (2014).

    ADS  Google Scholar 

  31. 31

    D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithm developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).

    Google Scholar 

  32. 32

    I. Veselovskii, P. Goloub, T. Podvin, D. Tanre, A. Silva, P. Colarco, P. Castellanos, M. Korenskiy, Q. Hu, D. N. Whiteman, D. Perez-Ramirez, P. Augustin, M. Fourmentin, and A. Kolgotin, “Characterization of smoke and dust episode over West Africa: Comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations,” Atmos. Meas. Tech. 11, 949–969 (2018).

    Google Scholar 

  33. 33

    I. Veselovskii, P. Goloub, Q. Hu, T. Podvin, D. N. Whiteman, M. Korenskiy, and E. Landulfo, “Profiling of CH4 background mixing ratio in the lower troposphere with Raman lidar: a Feasibility experiment,” Atmos. Meas. Tech. 12, 119–128 (2019).

    Google Scholar 

  34. 34

    D. Müller, E. Chemyakin, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, and A. Romanov, “Automated, unsupervised inversion of multiwavelength lidar data with TiARA: Assessment of retrieval performance of microphysical parameters using simulated data,” Appl. Opt. 58 (18), 4981–5008 (2019).

    ADS  Google Scholar 

  35. 35

    M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, San Diego, USA, 2000).

    Google Scholar 

  36. 36

    S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Troposphere aerosol layers: homogeneity in the altitude distribution of the aerosol optical and microphysical characteristics,” Opt. Atmos. Okeana 29 (12), 1043–1049 (2016).

    Google Scholar 

  37. 37

    S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency Raman lidar sensing. Part 1. Methods of optical parameter retrieval,” Atmos. Ocean. Opt. 22 (3), 302–315 (2009).

    Google Scholar 

  38. 38

    G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, and S. B. Belan, “Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 30 (1), 18–32 (2017).

    Google Scholar 

  39. 39

    Yu. S. Balin, G. P. Kokhanenko, M. G. Klemasheva, I. E. Penner, S. V. Nasonov, S. V. Samoilova, and A. P. Chaikovskii, “LOSA-S”—a basic lidar of the Russian segment of CIS-LiNet,” Opt. Atmos. Okeana 30 (12), 1065–1068 (2017).

    Google Scholar 

  40. 40

    Yu. S. Balin, G. S. Bairashin, G. P. Kokhanenko, M. G. Klemasheva, I. E. Penner, and S. V. Samoilova, “LOSA-M2 aerosol Raman lidar,” Quantum Electron. 41 (10), 945–949 (2011).

    ADS  Google Scholar 

  41. 41

    F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23, 1609–1613 (1984).

    ADS  Google Scholar 

  42. 42

    V. A. Kovalev and W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (John Wiley & Sons, New York, 2004).

    Google Scholar 

  43. 43

    V. Shcherbakov, “Regularized algorithm for Raman lidar data processing,” Appl. Opt. 46, 4879–4889 (2007).

    ADS  Google Scholar 

  44. 44

    S. V. Samoilova and Yu. S. Balin, “Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar,” Appl. Opt. 47, 6816–6831 (2008).

    ADS  Google Scholar 

  45. 45

    S. V. Samoilova, M. A. Sviridenkov, and I. E. Penner, “Retrieval of the particle size distribution funcion from the data of lidar sensing under the assumption of known refractive index,” Appl. Opt. 55, 8022–8029 (2016).

    ADS  Google Scholar 

  46. 46

    S. V. Samoilova, “Simultaneous reconstruction of the complex refractive index and the particle size distribution function from lidar measurements: Testing the developed algorithms // Atmos. Ocean. Opt. 32 (7), 628–642 (2019).

    Google Scholar 

  47. 47

    S. V. Samoilova, I. E. Penner, G. P. Kokhanenko, and Yu. S. Balin, “Simultaneous reconstruction of two microphysical aerosol characteristics from the lidar data,” J. Quant. Spectrosc. Radiat. Transfer 222–223, 35–44 (2019).

    ADS  Google Scholar 

  48. 48

    R. Boers, E. W. Eloranta, and R. L. Coulter, “Lidar observations of mixed layer dynamics: Tests of parametrized entrainment-models of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).

    ADS  Google Scholar 

  49. 49

    L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).

    ADS  Google Scholar 

  50. 50

    G. Martucci, R. Matthey, V. Mitev, and H. Richner, “Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere,” J. Atmos. Ocean. Technol. 24, 1231–1244 (2007).

    ADS  Google Scholar 

  51. 51

    E. F. Mikhailov, S. S. Vlasenko, and T. I. Ryshkevich, “Influence of chemical composition and microstructure on the hygroscopic growth of pyrogenic aerosol,” Izv. Atmos. Ocean. Phys. 44 (4), 416–431 (2008).

    Google Scholar 

  52. 52

    G. L. Schuster, O. Dubovik, and B. N. Holben, “Angstrom exponent and bimodal aerosol size distribution,” J. Geophys. Res. D 111 (2006). https://doi.org/10.1029/2005JD006328

  53. 53

    L. Lee, O. Dubovik, E. Derimian, G. L. Schuster, T. Lapyonok, P. Litvinov, F. Ducos, D. Fuertes, Ch. Chen, Z. Li, A. Lopatin, B. Torres, and H. Che, “Retrieval of aerosol components directly from satellite and ground-based measurements,” Atmos. Chem. Phys. 19, 13 409–13 433 (2019).

    Google Scholar 

  54. 54

    S. P. Khromov and M. A. Petrosyants, Meteorology and Climatology (Moscow State University, KolosS, Moscow, 2004) [in Russian].

  55. 55

    D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. D 112 (2007). https://doi.org/10.1029/2006JD008292

  56. 56

    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to thank B.D. Belan and M.Yu. Arshinov for the kindly presented data of the balloon-borne sounding of the atmosphere.

Authors also thank the reviewer for the comments which helped to improve the paper.

Funding

The work was supported in part by Ministry of Science and High Education of RF (Agreement no. 14.616.21.0104, the unique identifier RFMEFI61618X0104).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Samoilova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samoilova, S.V., Balin, Y.S., Kokhanenko, G.P. et al. Aerosol Layers in the Troposphere: Peculiarities of Variations in Aerosol Parameters at a Change in the Advection Direction. Atmos Ocean Opt 33, 347–361 (2020). https://doi.org/10.1134/S1024856020040132

Download citation

Keywords:

  • aerosol
  • lidar
  • boundary layer
  • free troposphere
  • optical and microphysical parameters