Skip to main content
Log in

Pulsed Inductive IR Ar I laser

  • OPTICAL SOURCES AND RECEIVERS FOR ENVIRONMENTAL STUDIES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of experimental studies of the effect of pumping conditions on the spectral and temporal characteristics of IR Ar I laser radiation under excitation of the active medium by longitudinal pulsed inductive discharge are presented. The lasing was obtained at transitions of neutral argon atoms at wavelengths of 1213, 1240, 1270, 1694, and 1791 nm in pure argon and in its two-component mixtures with helium and neon. The optical pulse length at half maximum was (5 ± 1) ns. The radiation energy attained 0.1 mJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. O. Clark, “Investigation of the operating characteristics of the 3.5 μ xenon laser,” IEEE J. Quantum Electron. 1 (3), 109–113 (1965).

    Article  ADS  Google Scholar 

  2. S. L. Jacques and D. J. McAuliffe, “The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53 (6), 769–775 (1991).

    Article  Google Scholar 

  3. B. I. Vasil’ev and U. M. Mannun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electron. 36 (9), 801–820 (2006).

    Article  ADS  Google Scholar 

  4. A. A. Andronov, N. G. Zakharov, A. V. Marugin, and A. P. Savikin, New IR and THz Sources and Detectors (NNSU, Nizhny Novgorod, 2007) [in Russian].

    Google Scholar 

  5. O. A. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17 (2), 131–137 (2008).

    Article  Google Scholar 

  6. A. I. Konak, S. P. Mel’nikov, V. V. Porkhaev, and A. A. Sinyanskii, “Lasing on the IR transitions in krypton and argon atoms due to excitation of active media with uranium fission fragments,” Quantum Electron. 22 (6), 511–515 (1995).

    Article  ADS  Google Scholar 

  7. A. V. Karelin, V. F. Tarasenko, and S. I. Yakovlenko, “High-pressure atom and atomic-ion laser,” Laser Phys. 10 (4), 827–844 (2000).

    Google Scholar 

  8. J. W. Shon and M. J. Kushner, “Excitation mechanisms and gain modeling of the high-pressure atomic Ar LASER in He/Ar mixtures,” J. Appl. Phys. 75 (4), 1883–1890 (1994).

    Article  ADS  Google Scholar 

  9. A. Yu. Dudin, D. A. Zayarnyi, L. V. Semenova, N. N. Ustinovskii, I. V. Kholin, and A. Yu. Chugunov, “Electron-beam-pumped laser utilizing mixtures of Xe, Kr, and Ar with two-component buffer gases,” Quantum Electron. 21 (11), 1172–1175 (1991).

    ADS  Google Scholar 

  10. P. L. Chapovsky, V. N. Lisitsyn, and A. R. Sorokin, “High-pressure gas lasers on Ar I, Xe I, and Kr I transitions,” Opt. Commun. 16 (1), 33–36 (1976).

    Article  ADS  Google Scholar 

  11. O. R. Wood, E. G. Burkhardt, M. A. Pollack, and T. J. Bridges, “High-pressure laser action in 13 gases with transverse excitation,” Appl. Phys. Lett. 18 (4), 112–115 (1971).

    Article  ADS  Google Scholar 

  12. G. J. Linford, “High-gain neutral laser lines in pulsed noble-gas discharge,” IEEE J. Quantum Electron. 8 (6), 477–482 (1972).

    Article  ADS  Google Scholar 

  13. A. M. Razhev, D. S. Churkin, and E. S. Kargopol’tsev, “IR lasing on atomic xenon with pumping by longitudinal pulse inductive discharge,” Laser Phys. Lett. 12 (4) (2019).

  14. V. V. Kazakov, V. G. Kazakov, V. S. Kovalev, O. I. Meshkov, and A. S. Yatsenko, “Electronic structure of atoms: Atomic spectroscopy information system,” Phys. Scr. 92 (10), 1–6 (2017).

    Article  Google Scholar 

  15. V. N. Lisitsyn and A. R. Sorokin, “Pulsed lasing mechanism in a high-pressure electrical-discharge Ar-Xe laser,” Quantum Electron. 8 (11), 1481–1484 (1981).

    ADS  Google Scholar 

  16. A. R. Sorokin, “Mechanism of pulse emission from high-pressure electric-discharge He–Ar, He–Kr, and He–Xe infrared lasers,” Quantum Electron. 13 (2), 165–171 (1983).

    ADS  Google Scholar 

Download references

Funding

The research results presented in the work were obtained within the state assignment (theme no. AAAA-A17-117030310293-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Razhev, D. S. Churkin or R. A. Tkachenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razhev, A.M., Churkin, D.S. & Tkachenko, R.A. Pulsed Inductive IR Ar I laser. Atmos Ocean Opt 33, 435–438 (2020). https://doi.org/10.1134/S1024856020040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020040119

Keywords:

Navigation