Skip to main content
Log in

Turbulent UV Lidar BSE-5

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

An eye-safe turbulent UV (355 nm) lidar BSE-5 designed for the study of atmospheric turbulence is described. Lidar works on the basis of the backscatter enhancement effect, which occurs when a light wave propagates twice in a random medium. The design of the lidar is based on a transceiving afocal Mersen telescope, which supports thermomechanical stability during long-term operation of the device. To reduce the telescope size, the edges of the primary mirror have been cut off, because they are not used during the lidar operation. The lidar was tested at Tolmachevo airport, Novosibirsk. During the tests, the turbulence was continuously monitored over a runway and over the aircraft parking. The lidar confidently recorded a turbulent wake of any aircraft during takeoff and landing. The lifetime of a strong artificial turbulence over the airfield was found to be 2–3 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv. Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  2. A. S. Gurvich, “Lidar positioning of higher clear-air turbulence regions,” Izv. Atmos. Ocean. Phys. 50 (2), 143–151 (2014).

    Article  Google Scholar 

  3. I. A. Razenkov, “Turbulent lidar: I—Design,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

    Article  Google Scholar 

  4. I. A. Razenkov, “Turbulent lidar: II—Experiment,” Atmos. Ocean. Opt. 31 (3) 281–289 (2018).

    Article  Google Scholar 

  5. A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, Invention Certificate No. 359, Byull. Izobret., No. 21 (1989).

  6. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “Backscatter effect on bodies placed inside a randomly inhomogeneous medium,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 16 (7), 1064–1070 (1973).

    Google Scholar 

  7. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: I—Equations,” Atmos. Ocean. Opt. 30 (2), 156–161 (2017).

    Article  Google Scholar 

  8. I. A. Razenkov, “Estimation of the turbulence intensity from lidar data,” Atmos. Ocean. Opt. 33 (3), 245–253 (2020).

    Article  Google Scholar 

  9. I. A. Razenkov, V. A. Banakh, and E. V. Gorgeev, “Lidar “BSE-4” for the atmospheric turbulence measurements,” Proc. SPIE—Int. Soc. Opt. Eng. (2018). https://doi.org/10.1117/12.2505183

  10. N. N. Mikhel’son, Optical Telescopes (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. I. A. Razenkov, “Optimization of parameters of a turbulent lidar,” Atmos. Ocean. Opt. 32 (3), 349–360 (2019).

    Article  Google Scholar 

  12. http://jre.cplire.ru/jre/jan12/9/text.pdf. Cited December 17, 2019.

  13. V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).

    Article  ADS  Google Scholar 

  14. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32 (33), 6742–6753 (1993).

    Article  ADS  Google Scholar 

  15. A. L. Afanasiev, V. A. Banakh, and D. A. Marakasov, “Passive optical monitoring of wind conditions and indication of aircraft wakes near airport runways,” Atmo-s. Ocean. Opt. 32 (5), 506–510 (2019).

    Article  Google Scholar 

  16. I. N. Smaliho, V. A. Banah, A. V. Falits, and A. A. Suharev, “Experimental study of aircraft wake vortices on the airfield of Tolmachevo airport in 2018,” Atmos. Ocean. Opt. 33 (2), 124–133 (2020).

    Article  Google Scholar 

  17. A. A. Azbukin, A. Ya. Bogushevich, V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “Hardware-software complex for studying the structure of the fields of temperature and turbulent wind fluctuations,” Atmos. Ocean. Opt. 31 (5), 479–485 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our opticians O.A. Rynkov and K.A. Rynkov.

Funding

The work was supported by the Russian Academy of Sciences (Fundamental Research Project No. AAAA-A17-117021310149-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Razenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razenkov, I.A., Nadeev, A.I., Zaitsev, N.G. et al. Turbulent UV Lidar BSE-5. Atmos Ocean Opt 33, 406–414 (2020). https://doi.org/10.1134/S1024856020040107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020040107

Keywords:

Navigation