Skip to main content

Numerical Analysis of Wavefront Reconstruction under Conditions of High-Intensity Atmospheric Turbulence


The optical radiation wavefront distorted by turbulence is reconstructed based on the Hartmann method by approximating the wave function by Zernike polynomials according to estimates of local tilts. The reconstruction is analyzed for high-intensity turbulent distortions. Relying on results of statistical analysis of information on phase distortions of radiation by a hartmannogram formed in the plane of the receiving device, a method is suggested which allows one to reduce the residual reconstruction error caused by the presence of high-intensity phase fluctuations in the wavefront distribution.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    V. G. Taranenko and O. I. Shanin, Adaptive Optics (Radio i svyaz', Moscow, 1990) [in Russian].

  2. 2

    V. P. Lukin and B. V. Fortes, Adaptive Beam Forming and Imaging in the Atmosphere (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  3. 3

    N. N. Botygina, P. G. Kovadlo, E. A. Kopylov, V. P. Lukin, M. V. Tuev, and A. Yu. Shikhovtsev, “Estimation of the astronomical seeing at the Large Solar Vacuum Telescope site from optical and meteorological measurements,” Atmos. Ocean. Opt. 27 (2), 142–146 (2014).

    Article  Google Scholar 

  4. 4

    P. G. Kovadlo, V. P. Lukin, and A. Yu. Shikhovtsev, “Development of the model of turbulent atmosphere at the Large Solar Vacuum Telescope site as applied to image adaptation,” Atmos. Ocean. Opt. 32 (2), 202–206 (2019).

    Article  Google Scholar 

  5. 5

    R. Mackey and C. Dainty, “Adaptive optics correction over a 3 km near horizontal path,” Proc. SPIE—Int. Soc. Opt. Eng. 7108, 71 080 (2017).

  6. 6

    G. Marchi, “Adaptive optics system for the observation of terrestrial point-like sources: Results and problems,” Proc. SPIE—Int. Soc. Opt. Eng. 7828, 78280 (2017).

  7. 7

    V. P. Lukin, N. N. Botygina, O. N. Emaleev, V. P. Korol’kov, L. N. Lavrinova, R. K. Nasyrov, A. G. Poleshchuk, and V. V. Cherkashin, “Shack–Hartmann sensor based on a low-aperture off-axis diffraction lens array,” Autom. Monit. Meas. (Engl. Transl.) 45 (2), 161–170 (2009).

  8. 8

    L. V. Antoshkin, N. N. Botygina, L. A. Bolbasova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P. G. Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Oceanic Opt. 30 (3), 291–299 (2017).

    Article  Google Scholar 

  9. 9

    V. V. Lavrinov, “Dynamic control of adaptive optics correction of turbulent distortions in laser beams,” Opt. Atmos. Okeana 30 (10), 893–901 (2017).

    Google Scholar 

  10. 10

    S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371 (1), 323–336 (2006).

    ADS  Article  Google Scholar 

  11. 11

    O. Lardiere, R. Conan, R. Clare, C. Bradley, and N. Hubin, “Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes,” Appl. Opt. 49 (31), G78–G94 (2010).

    Article  Google Scholar 

  12. 12

    L. V. Antoshkin, A. G. Borzilov, N. N. Botygina, O. N. Emaleev, and P. A. Konyaev, “Deflector for correction of tilts angles of wave front,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108 332 (2018).

  13. 13

    L. V. Antoshkin, A. G. Borzilov, V. V. Lavrinov, and L. N. Lavrinova, “Program-hardware complex for optical beams formation with modeled tilt angels,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 104 660 (2017).

  14. 14

    A. L. Rukosuev, A. V. Kudryashov, A. N. Lylova, V. V. Samarkin, and Yu. V. Sheldakova, “Adaptive optics system for real-time wavefront correction,” Atmos. Ocean. Opt. 28 (4), 381–386 (2015).

    Article  Google Scholar 

  15. 15

    S. V. Artyshchenko, P. A. Golovinskii, and R. A. Chernov, “Reconstruction of the wavefront phase with the use of a complex neural network,” Opt. Atmos. Okeana 27 (10), 932–936 (2014).

    Google Scholar 

  16. 16

    R. J. Noll, “Zernike polynomials and atmosphere turbulence,” J. Opt. Soc. Am. 66 (3), 207–211 (1976).

    ADS  Article  Google Scholar 

  17. 17

    S. A. Shlenov, V. V. Vasiltsov, and V. P. Kandidov, “Energy parameters of CO2 laser radiation focused in a turbulent atmosphere under wind-dominated thermal blooming,” Atmos. Ocean. Opt. 29 (4), 324–330 (2016).

    Article  Google Scholar 

  18. 18

    D. A. Yagnyatinskii, D. M. Lyakhov, A. N. Borshchevnikov, and V. N. Fedoseev, “A control algorithm for an adaptive optics system based on the focal spot radius minimization,” Atmos. Ocean. Opt. 30 (2), 198–202 (2017).

    Article  Google Scholar 

  19. 19

    S. Yu. Bokalo, I. M. Bokashov, D. M. Lyahov, S. V. Pikulev, and A. V. Chernyh, “Stabilization of astronomic images using a controlled flat mirror,” Autom. Monit. Meas. (Engl. Transl.) 54 (1), 46–51 (2018).

  20. 20

    A. N. Borshevnikov, D. A. Dement’ev, E. V. Leonov, D. M. Lyahov, G. N. Sohareva, A. V. Chernyh, Yu. I. Shanin, and V. I. Shchipalkin, “Control of an adaptive optical system with deformable mirrors of low and high frequency resolution,” Autom. Monit. Meas. (Engl. Transl.) 54 (3), 314–320 (2018).

  21. 21

    O. I. Shanin, Adaptive Optics Systems for Tilt Correction. Resonance Adaptive Optics (Tekhnosfera, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to V. V. Lavrinov or L. N. Lavrinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavrinov, V.V., Lavrinova, L.N. Numerical Analysis of Wavefront Reconstruction under Conditions of High-Intensity Atmospheric Turbulence. Atmos Ocean Opt 33, 332–339 (2020).

Download citation


  • Shack–Hartmann wavefront sensor
  • turbulent distortions of optical radiation